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INTRODUCTION

At the 1979 Annual Meeting of the National Council of Teachers of
Mhthematics, the Council's Research Advisory Committee and the Special
Interest Group for Research in Mathematics Education (affiliated with
the American Educational Research Association) co-sponsored a research
presession. Three internationally renowned mathematics education

1 researchers were invited to present addresses:

Heinrich bauersfeld, Institut fUr Didaktik der Mathematik (IDM),
University of Bielefeld, Federal Republic of Germany

Efraim Fischbein, Tel Aviv University, Israel

Hans Freudenthal, now retired but until recently Director of IOWO
(Instituut Ontwikkeling Wiskunde Onderwijs), Utrecht, Netherlands

The three addresses all focus on the learning process,, but from very
different points of view. Professor Bauersfeld, using examples from
American studies, provides a thoughtful analysis of the miscommunication
inherent in many teacher-student interactions. Four deficient areas of
research in the teaching-learning process, fundamental problems of
research and development, and implications for teacher training are dis-
cussed.

Professor Fischbein cyrects attention to the role of intuition in
learning, providing numerous illustrations and a rationale for the
importance of intuition as students cope with mathematics. The.concept
of intuitions,, some of its characteristics, a classification schema, and
the nature of intuitions are described.

Finally, Professor Freudenthal traces the growth of number and
geometry ideas in one child. Situations and the child's reactions are
presented, with interpretations and additional comments.

A fourth paper, by Richard Lesh, is also included in this document.
He expounds on the role of research and theeneed for cooperation between
practitioners and researchers. Four problem areas needing research are
identified.

Significant ideas for researchers -- and teachers -- are provided
,in each/document. Careful study of their details should be made by
those paanning research and by those teaching, for there are points in
each paper which need further exploration and development.

We are pleased to make these papers available so that a wider
audience can read them and, we hope, gain new perspectives and ideas.

Marilyn N. Suydam
ERIC/SMEAC

t..
t.)



SUPPORTING RE8EARCH IN MATHEMATICS EDUCATION

Richard Lesh
Northwestern University

,t

In the July 1978 issue of the Journal for Research in Mathematics
Education, John Egsgard, then president of the National Council of
Teachers of Mathematics, published an editorial titled, "How Can Research
in Mathematics Education Become More Effective?" The editorial was brief,

offered no positive suggestions to answer its own questions, and concluded
with the statement:

Until the mathematics education research community can come up.
'with results that will affect the classroom teacher...I do not
believe that the Council would be justified providing addi-

tional resources for research. (p. 241)

The "Catch 22" irony in the above article would be comical and easily
rejected as nonsense--except that its conclusions resulted from negative,
naive,.and myopic attitudes about educational research which are signifi-
cant only because they are popular, among influential mathematics educators.

Nonetheless, it is foolish to conclude that what we don't know won't hurt
us. Teachers and other mathematics educators are justiTiably critical
about the quality of research in their fields. But to criticize the
results of past research, or to criticize the way current research is
done, is not the same as criticizing, opposing, or arguing not to support
efforts aimed at generating knowledge and information pertaining to prior-
ity problems in mathematics education. The latter type of criticism can

only minimize the chances that mathematics educators will ever find
adequate solutions to their most important problems.

What Is Research in Mathematics Education?

The 7oal of research is to develop a body of u-eful knowledge related
to important issues in mathematics education. The word "research" often
conjures up images of data gathering and data analysis, activities that
are too narrow to cope with the more important task of knowledge develop-

ment. Useful knowledge development involves: (a) identifying important
problems in mathematics education, (b) formulating agendas of well-
defined (and answerable) questions which build upon one another and
which contribute to some existing body of knowledge dealing with the
underlying problems, (c) identifying answers that are useful in a variety
of contexts--weeding out information that is of questionable validity or
usefulness, and (d) communicating the results and conclusions in a way
that is meaningful to Leachers, researchers, and other mathematics edu-
cators.

All of the above research functions are worthy of support by profes-
sional organizations like NCTM. It is not acceptable for professional
organizations to wiLhhold support for knowledge development until: (a)

researchers express their resurts in a form that is meaningfnl and useful

1
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to teachercs, or (b) teachers express their problems in a form that is
meaningful and accessible to researchers.

The fact that professional Orginizations have neglected their
roles in knowledge development is one Of the primary reasons why so
many important practitioner problems have been neglected research.

It is also why so much potentially,useful infqrmation has been negleCted
by practitioners.

Among the most important shortcomings of mathematics education
research are: (a) many of the most important practitioner problems
have been asatatii, or (b) for problems which have not been ignored,
an overwhelming amount of information may be available from a variety
of.research perspectives, but still very little may be knownc(because
the various areas use different language to express their results, con-
ceive problems9in different ways, and, in general, do not articulate
well with one another). Information overload is often a more serious
barrier to knowledge development than information scarcity. Lack of
cumulativeness has been one of the most obvious negative attributes of
existing research in mathematics education.

We should ittack the above problems--not attack research. Profes-

sional organizations should play importan4 Tiles (a) to'clarify problems
that are important to practitioners and to describe them so that they -

are accessible and meaningful to researchers from a variety of fisAds,
and (b) to criticize, select, organize, reconceptualize, and synttesize
information from a variety of research areas, and put them in a f,;.al
that is accessible and useful to practitioners. For example, the aajor
curriculum development projects of the Past decade produced a wealth-of
useful information and materials which today is nearly inaccessible to
teachers. One important goal for research ought to be to identify some
of the most important barriers to the diffusion and utilization of inno-
vative materials and useful information. Reinventing the wheel has been
a major pastime for mathematics educators--and a major waste of time for
both teachers and researchers.

Both of the above roles presuppose close working relationships among
researchers and practitioners--and an information flew that goes in both
directions, not just from researchers to teachers as Egsgard's editorial

suggests. Information from practitioners is needed--not only to identify
priority problems through needs assessments, status studies, and opinion
polls (CBMS/NACOME, 1975. Suydam & Osborne, 1977; Weis's, 1978), but
also to shape the direction of research through ethnographiC or natural-
istic observation studies designed to clarify what teachers aild other
mathematics educators really do, really care about, or really _hink.
Many people believe that, in mathematics education, the best practice
of the best practitioners is still better than the best theories of the

best theorists. Therefore, for greatest effectiveness, tathematics
education research should distill as much information as possible from
this "practitioners' wisdom"--following'a pattern set centuries earlier
in physics, chemistry, and other well-established areas of scientific
inquiry.
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Too often the dialogue between researchers aitd practitioners is
imagined as being restricted to one-way researcher-to-practitioner monologues:
a professor (who is typically assumed to be a psychologist-type who has little
experience in a classroom) lectures teachers about psychological "do's" and
"don'ts" based on the results of single isolated studies. This conception
is naive for a variety of reasons. First, the practitioner's side of the
dialogue includes parents, administrators, textbook writers, legislators,
school board members, and other people who participate hn the mathematics
education enterprise and whose activities and decisions influence classroom
instruction. Second, the researcher's side of the dialogue includes mathema-
ticians, representatives from a variety of different areas of scientific
inquiry (e.g., psychology, sociology, anthropology,.linguistics) as well as
'many other educational specialists (e.g., measurement/evaluation/testing
specialists): Third, the communication system is cyclic, with the informatibn
froit practitioners to researchers being equally as important as that from
researohers to practitioners--especially in the planning or formative stages
of knowledge development projects. Fourth, because of the complexity of
most of the important problems in mathematics education, it is unrealistic
to.expect that they be resolved by single isolated studies. In fact, it is
unrealistic to expect most individual studies to have immediate and wide-
ranging implications for classroom practice. However, it is reasonable to
expect individual research studies to'leed into a theory or body of knowledge
which will'have implications within some reasonable length of time (e.g.,
5-19 years). If progress is ever to be made on the issues hmportant to
mathematics educators, most issues will require long-term intensive commit-
ments and,coordinated research efforts from zympi of researchers, representing
a variety of practical and'theoretical perspectives, building upon one
another's work over extended periods of time.

For practitioners who are involved in the mathematics education enter-
prise--whether they are parents, teachers, administrators, legislators, or
.others--a great deal of information.is available which is seldom used. For
example, a recent status study (Suydam & Osborne, 1977), funded by the' '

National Science Foundation, concluded that:

1. Educational policy is frequently determined without collecting
enough information to allow the process to be rational.

2. Educational policy is frequently constructed without using
information that is readily available.

3. Policy formulation typically has ignored existing practices in
the schools except as mirrored in the disquietude of society.
Information has been collected after-the-fact of policy decision
to confirm the actions taken.

Similar statements could be made about other potential practitioner-
consumers of research information and materials--including teachers. 'For
example, research or teacher decision making has investigated how teachers'
"implicit theories" influence the following kinds of issues: What cues
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do teachers consider and disregard as they make classroom decisions? Why
.are some cues more salient to teachers than others? How do teachersweigh

and manipulate the cues they consider? What effects do teachers' judg-
ments have on their teaching styles, on classroom behaviors, or on student
learning (Morine, 1976; Peterson, Marx & Clark, 1978; Shavelson, 1973;

Shavelson, Caldwell & Izu, 1977;. Taylor, 1970; Zahorik, 1975)? These

studies consistently found that teachers! thoughts during instruction
attended primarily to their own behaviOr, the unpredictable parts of
lessons, and needed adjustments it.,,lessons that were going poorly.'
Teachers made only slight modifications in their plans during instruction,
modified only those lessons that were going poorly, and used Student
involvement cues to determine whether lessons were going poorly. It has

also been found that one of the best ways.to iMprove teacher decision.-
making, in terms of both the quantity and the quality of the information
teachers use, is to improve their-"implicit theories."

The useful results of research need not always result in a set of
pedagogical "do's" and "clones." In fact, teachers, may be the ones best

equipped to make these decisions, provided they are given accurate infor-
mation and useful ways to think about their activities.

Some mathematics educators who claim to be good teachers insist that
research has had little influence on their teaching. Such claims usually

represent a naive conception of the varieties of products resulting from
research. Ever, time a teacher teaches and every time a set of instruc-
tional materials is developed, the teacher or authors operate on some
basic assumptions (perhaps unarticulated) about teaching and learning.
There is little doubt that educators, parents, teachers, government offi-
cials, and others throughout the world see reality differently and talk
about it differently as a result of the work done by severaroutstanding
researchers. Freud, Dewey, Thorndike, Skinner, Piaget, and Mead are but
a few notable examples of individuals whose research has obviously left

its mark on both thought and practice in education. However, these

influences did not result from isolated studies. Rather, they were the
products of theory development which organized, synthesized, and inter-
preted the results of many studies which were conducted over many years.

%

Professional organizations have powerful resources which could be
used to encourage knowledge development and the formation of research
communities to address priority problems in their areas. Through their
national and regional meetings, publication outlets, professional reward
structures, and a variety of potentially prestigious standing committees
and ad hoc committees and projects, professional organizations should
contribute to the identification of long-range research agendas to
address priority problems. They should help recruit first-rate
researchers and practitioners to work together cooperatively on issues
of common concern; they should promote the formation of communities of
research/practitioners; they should facilitate communication among
different types of individuals within these groups; they should help
overcome the fragmentation and lack of cumulativeness which has charac-
terized past knowledge-development efforts; and in other ways they should
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help focus, coordinate, and facilitate the development bf useful know-
ledge dealing with important problems in mathematics education.

Too often,,profesdional organizations have played exactly the
opposite kinds of roles. They have alienated "outside" resources; they
have defined teacher problems in ways that are short!sighted,and naive;
and they have helped to popularize superficial and simplistic "solutions."

, Egsgard's article, "Problems of Teachers of Mathematics and Some Solu-
i

Itions" (1978b), is a convenient example of these latter characteristics
Egsgard's "problems" and "solutions" are riddled with references to nice-
sounding but naive constructs like "the experienced teacher"--as though
teachers could be classified into just two categories, experienced and
inexperienced; and as though a teacher who has taught college-bound llth
and 12th graders in Canada is equivalent to a teacher who has taught
remedial math to 7th and 8th graders in inner-city Chicago, or to a
kindergarten teacher in rural Indiana. Egsgard naively assumes that "good"
teachers autamatically make good tekher trainers (presumably, by the same
line of reasoning, good football players automatically make good coaches).
He assumes that a teacher who is good at lecturing to college-bound high
school students will be equally good in primary school classes. He also
assumes that only one (:) the following types of individuals and expertise
are important in teacher trainine: (a) people who know a great deal ab. ut
the mathemati s content which is to be taught, (b) people who know a great
deal about th psychologir.1 capabilities and charact6ristics of students
and/or teache s at a part_ liar grade level, (c) people who have a great
deal of experjLence teaching at a particular grade level or with a partic-
ular type of tudent (e.g., gifted, learning disabled,remedial, etc.),
(d) people w o know about how the mathematics instruction in a particular
class fits into the overall curriculum, (e) people who 14now about the effi-
cient and effective use of instructional resources (e.g., textbooks,
computers, tests, etc.).

No single individual is likely to have all of the above knowledge and
experience. Yet, all of these perspectives (and more) should have mean-
ingful input into the solutions of important problems that face mathe-
matics teachers. No single type of individual--teacher, psychologist,
mathematician, textbook editor, test developer--should be excluded from
the dialogue; rather, professional organizations should create mechanisms
to evaluate critically the validity and usefulness of claims made by all
ehese individuals.

It is commendable that some individuals lobby strenuously for the
views of particular constituencies within professional organizations, but
such efforts should not degenerate into attempts to silence other consti-
tuencies or to prejudge the usefulness of their inputs.

The mathematics education enterprise includes a variety of different
types of players with different experiences and expertise, and if the
system is to function properly, each contributor should focus on those toles
that he or she does best. The kinds of skills, abilities, and experiences

10
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that are needed to teach a kinderiarten class are quite different from those
required to write a geometry book based on recent Soviet "teaching studies"
research, or from the research skills required to "follow the mathematical
thinking" of gifted 7th graders during non-routine problem solving attempts.
If-teachers and researchers are to fulfill their own roles properly, they
eannbt be expected also to provide for all of'the many other functions that
are needed in the mathematics education enterprise.

It is important to build a community of mathematics educators who will
work together to generate knowledge and information about important problems
in mathematics education. Professional organizations, like NCTM and AERA,
have critically important roles to play in the formation of this community.

Problems in Mathematics Education

What are some characteristics of emerging problems in mathematics?
The problemsç that confront mathematics teachers today are similar to those
that confro t the society at lar2e. They must accommodate an increasingly
complex ente prise that has azmultiplicity of tasks, ranging from socializa
tion to incr asing test scores, despite declining resburces. Educators need
to reverse values once associated with continuous growth and redirect
attention toward finding more efficient and less costly solutions to prob-
lems. Unfortunately, the, kinds of "solutions" provided by past research has
too often required overWorked teachers to work harder, and bankrupt school
systems to become more expensive.

The world of the late 1970's is quite different from the 1950's and
1960's when massive amounts of money were allocated to the development,of
new curriculum materials and to the training of more and better teachers.
In the late 1950's there were apparent mathematics personnel shortages,
school enrollments were_increasing rapidly at all levels, and textbooks
were badly out\ of date. Today, many of these trends have been reversed.

During that past decade some of the most powerful influences on mathema-
tics education have been demographic (d.clining enrollment), economic
(dwindling resources),'political (equity issues), legal (required special

\ education offerings), and technological (television, calculators, computers).
The "baby boom" that flooded our schools in the 1960's has evolved into a
middle-apd society in which adult education, continuing education, remedial
education, non-school education, and preschool education have become
increasingly more important. , New student populations have emerged (e.g.,
adults) wholave new educational demands (e.g., mathematics for career
opportunities), and new educational institutions have emerged to meet these
needs. For example, two-year colleges, community colleges, and a variety
of non-certification adult education programs have more than doubled in the
past decade. According to the 1976 Databook for the National Institute
of Education.

Education is today the major occupation of 62.2 million people
in the United States. That figure, along with the fact that more
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than $96 billion will be speilt by educational institutions this
year, lends credence to-the contention that education is now the
Nation's largest enterprise. (p. 5)'
Unfortunately, our schools have been slow to adapt to the above

of Americd'phenomena with its nec.i student Populations and new educati
demands. Consequently, schools are a declining industry at the same
that education is a booming enterprise.

"greying
onal

t ime

The above trends have important implications for mathematils education
research: e.g., mathematics education is not restricted to schools, students
are not restricted to children, and instruction is not restricted to teaching.
This is not to say that mdiheiatics educators should abandon their traditional
concerns with the teaching of youngsters in schools. But, it does mean that
mathematics teaching exists within a larger educational systen, that it is
strcngly influenced by non-school factors, and that solutions to problems
which do not in some way take these factors into account areilikely to be
simplistic--and ultimately not helpful.

According to a recent series of NSF-funded needs assesiments and status
studieb (Helgeson, Stake & Weigs, 1978; Stake & Easley, 1970; Suydam
& Osborne, 1977; Weiss, 1978)7 some of the most important difficulties
confronting mathematics teachers are related to the following trends:

1. Declining enrollments have resulted in teacher job insecurity
and a slowing down of teacher turnover. Few new teachers have
been hired; the average age of faculties is increasing, and many
teachers opt to teach out of their area in order to maintain
employment.

On the other hand, mathematics teacher shortages have developed
in many parts of`the country, and talented college students (who
might have gone into teaching ten years ago) are no longer getting
teaching certification. Once they have lost their teaching jobs
and have found other employment, many,of the most talented/teachers
choose not to go back into teaching.. So, the reserve pool of
talented teachers is often illu ry.

One important role for 'research is to furniLh accurate and meaningful
information to describe current circumstances and future trends
in education.

2. Pressure for accountability has increased narkedly within the past
ten years. Therefore, the goals selected for instniction are
often the ones that.are easiest to document. Standardized tests
have assumed increasing importance in spite of the recognition
that scores from tests are being misused.

A second role for research is to construct and validate useful
measurement and evaluation instruments.
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3, Sphool financial probleis have produced /arger clatses, more
courses per teacher, loves salaries, feser fringe benef47s,
falser par/a-professional assistaetse diminished ineervice oppor-
tunities, and relatively ineffective teacher suppert systems.
School overhead -(heet; upkeep,' supplies) costs more now than
previously. The resal.t is an evaposion of discretionary funds
and fewer replacements o texts and equipmente Curriculum
development efforts during the past 20 years have produced a
number of useful and'innovetive materials that are today quite
inaccestible to matt teachers.

A third role for reeearch is to investigate harriers to the
develoOment, dissemination, and utllizetion of effective and
efficient instructional materials.

t.,

4, Equal opportunity concerns (for women, minOrities, the handi-
capped) are related to definitions of basic skills. Mathematics
has served as a significant barrier for.career opportunities.
Increased emphasis on equal educational opportunity has also
resulted in more hettrogeeeous classrooms ahd pressures to treat
all students in the same way. Teachers are faced with conflict-
ing pressures to individualize instruction on the one hand, while
treating all erudents Alike on the other. In these circumstances,
basic skills may be geared to the lowest common denominator ef
ability levels.

,A fourth role foreresearch is to identify the skille and' abilities
needed by a, variety of \different student eopulatioes--and to levee-
tigate effective ways of meeting these needs,.

Many other problem areas could-be identifit4 for ma0ematics education
researchranging from careful descriptions of childrens priMitive.concep-
tions of particular mathematical ideas (e.g., rational number, measOrement
(mncepts) to experimentn involving teacher-4raiming programs or teacher
decfi.fAnn mAking UuwevCr, from.the problem areas and trends that have
been given already, clear that:

Perh:3H, vIteral and fundamental challenge now facing
mtihematicq et,vion raseareh is that of achieving better
understatt4ing of highly Complex phenomena-that involye a large
number of interacting components (ix., systems of "organized
fNmnlexity") in which Ow. extent and severity of problems are
00;.en wfknown, diffuse, and (Milting. lieemwe interdepen-
4mie in Ow edtwation svstem, it V'itwreasingly difficult
to ftn4 olutioto to inn, pr6hlem that do n6t aggravate or creatc
A tew Peoplv Who 9hould onenaraged to addres erok
len in mqt.lavmaUc education shonld include more than wo,tchq3-
Aogist or khwie m6o c41 themselves mathematic9 edneation

o hoid thctude ponqmiNt, inform4tiP,w1
OrJ(4!.i,L:;n wi.v1A5t,



Users,,pf Mathenatics education research informatien should
--if the interests ef mathematics teachers are to be servetP--
include uotenly teachers but also administrators, parents,
school board members, tinislators, etc.

1)4
Because of the interdependencies characterizing problems n

mathematics education and beciuee of the rapid rates of ch nge,
problems need to be anticipated rather than discovered. How-
ever, the task of foreseeing problems and predicting policy out-

e comes is immensely more difficUlt than the task of reacting to
events and adjusting policies by trial and erroe. Many problems
that can be foreseen have so far shown only a small part of them-
selves. Popular attention and governmental concern tend to focus
on these current manifestations of problems--even though(they are
often little more than precursive Symptoths--with the reSult that
actions intend& as remedial are often halfway measures. It is

this--the response to symptoms--that gives the impresaion of
moving from crisis to crisis, each more unexpected than the last.

Conclusion

Throughout this'paper the factors that have been amphasieed are those .

,which stress the need for building a community of people who.will work
together to generate useful knowledge and information about priority'prob-
lems in mathematics education. Professional organizations haVe.important
reles to pley in this effort. Yet, these responaibilities have been
neglected. It is long past time for positive action.

At the Annual Meeting of the National Council of Teachers of hathe-
mattes, rest;arch presessices have been co-sponeored by the NCTM*s Research
Advisory Committee and the American Educational Research Association Special
interest Group for Research in Mathematics Education 'These presessions
represent one Oositive step toward satisfying some of the research support

roles described above, The papers that folloW were presented at the 1979
presessionin Boston by thr e internationally prominent mathematics
education re!warcher.
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HIDDEN DIMENSIONS IN THE SO-CALLED,REALITY
OF A MAyHEMATICS CLASSROW--

Heinrich Bauerefeld
University of, Bielefeld

Federal Republic of Germany

LIREIEJS21.4i5.9.a.

In old Russia two men meet in a train somewhere between Moscow and
Warsaw. Since the beaver collars'indicate they are both merchants, one
of them asks: "Where are you going?" "To Moscow," the other replies.
"Hey," says the first one, "if you say you go ta Moscow you must really
want me to believe that you go to Warsaw. But this train is headed for
Moscow and this makes it certain that you travel to Moscow. So, why are
you lying to me?"

These two men are taiking not only about directionsbut more, they
are concerned with their mutual expectations and with their subjective
interpretation of what they "really" do. Though the replying man tells
the "truth" from our contextual view, the asking protagonist understands
the utterance as a lie.

Let us try an explanation. (This is not to kill a joke'by explain-
ing, but rather to use the explanation to illustrate a more important
problem.) Competing merchants will hardly disclose good sources and
addresses to each other, The questioner therefore expects a non-destina-
tion as an answer: Knowing these rules of the,interaction and hearing
the obviously true-destination, he must construe a lie. Thus we laugh
about a man who seets to be the captive of his expectations. He became
.accustomed to this game and for him it is xeaIity, his reality. Seen
from a more general pointof view our "truth" about what is the case is
no better or more valid than is his "truth"--although we enjoy a larger
majority supporting our interftetation.

This story about "situations," "rules," "expectations and interpre-
tations," and "subjective realities" brings me directly to my theme:
hidden dimensions in the so-called reality 6f a mathematics classroom.
After a short overview of mathematics learning as a social aptivity and
the role of related theory, the constitutive power of human interaction
will be concretely demonstrated with a documcnted classroom situation.
Following this, four deficient areas of research in mathematics education
will be identified and discussed with a view to changing paradigms of
research. Finally, I will come back to my main concern of pre-service
and in-service teacher training and make some preliminary conclusions
for it.

The Contribution of Social Sciences

To view the learning and teaching of mathematics as a social process
"jointly produced social settlement" as Lee S. Shulman puts it (1979,

13
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Note 1)--seems to be a fairly recent issue. Although the ancient Greeks

provided us with famous examples of mathematics instruction through dia-

logue (e.g., Plato's "Meno" in Hamilton and Cairns, 1961), we still do

not have much information about the social dimensions of generaeing
mathematical knowledge and of developing individual mathematical power

within the classroom. Particularly, researchers in mathematics educa-

tion have not spent muCh time studying these dimensions of human inter-

action: Other discipline's have produced relevant research specific to

themselves, although not to the learning of mathematics. Speaking of

hidden or neglected dimensioni within mathematics education is only

relatively true in the sense that researchers have mkt made use of

relevant developments in the other disciplines.

Examples of such contributions Come from sytbolic interactionism
(Blumer, 1969); Goffman, 1969), linguistics .(Gumperz & Hymes, 1972;

Herrlitz & Gotterts, 1977), ethnomethodology (Cicourel et al., 1974;

Mehan & WOod, 1975; Mehan,. 1979). .The demarcation among-thesedisci,
plines is difficult, because of their increasing integration-through

interdisciplinary procedures, propedures which might also benefit mathe-

matics education. Topics such as the generation of meaning and the

function of language in social situations, the actual shaping of

behavior and cognitive performance through interaction, the specificity

of communication in institutionalized settings, etc., apparently force

interdisciplinary apprdaches and have formed a new type of human science.

There is a final point to make in this initial overview. From the

Very beginning my .Concern is both pragmatic as well as highly theoreti.7,

cal. It is.pragmatic since my goal is to improve mathematics teaching

and learning through both teachers' and students' aotions. It is

theoretical because the "improvemene and the "differentiated orienta-

tion",require the most sophisticated, reproducible theoretical framework

availableo Both aspects, the pragmatic and the theoretical, action and

reflection, are deeply interwoven. Albert Einstein has put it sharply:

"Ii is always the theory which decides what can be observed" (Mehra,

1973. p. 269). From a physicist one might expect td hear the comple-

mentary statement: It is always the observation (or the "reality") which

decides the theory. In the hatan sciencesNdifferent actions and differ-

ent concerns often pioduce different theories, and different theories in

turn produce different realitiep.

This point is often expressed in education by saying that research

findings, like a theory on.certain Classroom events, need special trans-

formation into teaching practice; or, "that there is little direct

connection 'between research and educational practice" (Kerlinger, 1977,

p. 5); or, "...what is good theory for-one purpose is not a_good_theory
fotanother" (Hilgard, 1976, Note 2). All of these statements are only

different expressions in an educational setting of the general point

made by Einstein.
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The Constitutive Power of Human interaction

Two dissertations mark cornerstones for the discussion of human
interaction in the mathematics classroom: George Bernard Shirk's
"Examination of conceptual fraMework of beginning mathematics teachers"
(1972), and Stanley Erlwanger's "Case studies of children's conception
of mathematics" (1974). Both Were directed by Jack A. Easley, Univer-
sity of Illinois.

Erlwanger's case studies'are related to Orograms for Individual
Prescribed Instruction. His documentation-of students' mathematical
misconceptions and deficiencies demonstrates how mathematics learning
ca be damaged by restricted teacher-student communication, a restric-
tió which leads to the near-total absence of negotiations over meanings..
It hould be clear that.the fading fascination shown'for programmed
ins ruction fails to provide a satisfactory explanation for the not-
appearance.of further research with such case studies.

Shirk's work with beginning teachers gives a,striking example of
the influence of subjective theories about Mathemilics teaching, the
student's role, and the teacher's role. Moreover, 'his documents give
a feel for the fragility of classroom discourse and 4 the impact of
these social situations on mathematics learning. Theiefore, I will take
a brief example fram Shirk's transcripts and use it for comments based
onptheories from other human sciences.

The episode presents ah early part of-a beginning teacher's lesson
with eighth graders at Urbana Junior High School. The topiels about
slides, flips, and turns-from "Motion Geometry" (a product of Max Beber-
man's UICSM), written by Russel Zwoyer and Jo McKeeby.Phillips.
preceding lesson Tot, the teacher, has defined parallel fines in terms
of slides. The lesson under discussion opens with students working on
positive examples. The episode which I am going to analyze starts with
line 39 of the transcript. The teacher presehts a counter-example, two
intersectirl lines (see Figure 1).

Figure 1.--"Tom, tape of 4/4/72" (from G. B. Shirk,
1972, pp. 173-174)

T - teacher, Tom K student, Kevin R - student, Reggie
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39 T: ... look at the next figure, right below
40 it. Ya, ... now, are those two liues parallel?

41 K: Hope.

42 T: Why not?

43 K: They or-3E1s each other.

44 T: OK, but, uh, ... according to what I've said about parallel
45 lines, what can't they do?

46, K: Can't cross them.. . .( )

47 T: What?

48 K: Can't .. they won't, they won't .. I'd rather not .. (ID)

49 T: What Reggie?

R: Um.

K: ... They won't come together ..

T: OK, but What did I say, what did I say
What could you do to get from one line

K: Slide.

T: OK. There's a slide arrow that'll go,
line into the other.

,.. Arrow.

50

51

52
53

54

55
56

57 K:

58 T:

59

60

61

on the
to the

16

first figure?..
other?

that'll take one

Right? Is there a slide arrow, ... on the second figure?
... Reggie? On the second figure, c'an you draw a-slide
arrow that'll go from one of these lines to the other?

R: (?) Not any more.

62 T: Like the ... a slide arrow, ... will that take the,
63 that go from one to the other?

64 R:

65 T:

66 R:

67 T:

68

69

I don't know.

Well, you remember what a

Hm?

It, ... it moved a'figure
one that'll do that?

R: Oh.

70 T: OK, is that a slide arrow?

slidp arrow did?

along that slide. Can'you draw

72 T: What is that? What, ... what did you draw?

73 R: A circle.

74 T: Well, you remember.

75 R: (Laughter)
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T: ... What that was called?

77 R: (?)

78 T: Does anybody remember ..

79 RI A rotating ...

80 T: OK, we called it a what? ... A turn?

81 R: A turn arrow.

82 T: OK, so what you were starting to draw in.was a turn arrow,
83 right? But I'm just talking about slides. Can you draw a
84 slide arrow? Just a straight line, a straight arraw,
85 that'll go from one, that'll take.one line to the other?

86 (pause for students to work)

First, I shall follow Shirk's own interpretation and then add my
comments later:

In this episode, Tom was working for a compound goal which he
wanted the students to reach: ... that they recognize the lines
illustrated were not parallel and realize there was a reason for
it through the definition of slides. The students did accom-
plish the first part of this goal; hut when they invoked a
reason other than that which Tom sought, it Was rejected by him
as being inappropriate. The students weren't connectini the
lessons together. Tom could only see this as a completely
unexpected deficiency in the students' understanding of a
lesson which he believed had been learned earlier, so he turned
the lesson toward this deficiency in an effort td correct for
it. (Shirk, 1972, p. 46)

The critical aspect centers around ToM's expectation that the
students would know all of the consequences of the definition
of "parallel." Not seedng this, Tom interpreted their problem
as having to do th slides; and this bothered him.for he

, believed that slides had been adequat4y covered and, therefore,
the students should know them. He was also assuming that-the
students would appreciate everything that he said and there-
fore, the problem would have 0 lie elsewhere, i.e., in their
more basic preparations which he thought had been covered ear-
lier, .(Shirk, 1972, p. 46)

For the re-analysis it is useful to note the major shifts in the
student-teacher' interpretations of the situation. The episode then
splits into four parts.

Part I, lines 39-51: The teacher does not eucceed in using the
counter-example to inter that intersecting lines cannot be parallel
(there is no slide arrow which would move the lines together). Unexpec-
tedly, he receives a much simpler answer, not invoking:motion geometry
concepts, "they cross each other" (line 43).- Albeit correct, the teacher.
rejects the answer as inadequate "on the basis only that they should
remember what he said in the nrevious example" (Shirk, 1972, p. 47).

2j P-1
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The students become confused and uncertain as evidenced by K's stam-
mering and brief withdrawal (line 48).

1

ta

Part_LELLiEtsata: "rem is now directing the students' attention
toward the drawing again in an effort to get them to see the connection
between it and the slide" (Shirk, 1972, p. 48). Repeatedly he uses the
key word "slide arrow."

The students try to guess the teaCher's intentions. Their answers
are short and cautious: "Slide" (line 54) and "..arrow" (line 57).
Their uncertainty increases. Thus under the teacher's pressing Reggie
modifies his answers from "Not any te e" (line 61) to "1 don't know"
(line 64). "With their initial efforts rejected, and Tom emphasizing
slides, the students begin to look around for ways to slide the two
lines together for there was nothing in the earlier portions of the
lesson about 'no slide' or 'not parallel" (Shirk, 1972, p. 48)4

N

Peet III, lines 65-86: Still, the teacher has- not given,up his
initial aim. His impulse, "We)1, peel remember" .(line 74 is an attempt
"to get Reggie to put together the formal principles by pointing out to
him that What he had. drawn were.turna rather than slides" (Shirk) 1972,
p. 49). Reggie's "failure" (as seen from the teacher's.eyes)ijustifies
the causal ascription that the students have forgotten all about slides.
eeerefore, the teacher begins to "reteach" the concept towards the end
of this section.

The students, however, "in an effort to come up with the answer
they thought Tom was looking for (namely, a slide arrow), invented slide
lines,between the two interbecting lines (Shirk, 1972, p. 49), as did
Reggie at line 69 (see Figure 2). Reggie's misinterpreting the teacher's
question (lines 74-76) "What that was called?" is completely in line with
his looking for slides. '11he drawings of the stddents in this part (see
Figure 3) expose the extent to which the teacher's pressing has contri-
butectto "spoiling" the students' concept of "slide" and of "slide arrow."
Nevertheless, the teacher's interpretation that the students have not
learned their slide lesson is not diminished but rather reinforced.

Figure 2., "Reggie at line-69" Figure 3. "Students at line 85"
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Part TV lines 87-155: (This concluding portion of the episode is not
included in the above quote.) "The remainder of this first episode involves
Tom's attempts to reteach the concept of slides to the students" (Shirk,

1972, p. 51). Aud t. works on that rehearsal until he gets the conviction
that "he has reconnected the students with slides and parallel lines"
(Shirk, 1972, p. 52).

On a more general level Shirk explains the episode using the terms
"split personality" and "guessing ahead" (the latter from John Holt, 1964).

A "split personality" occurs when the teacher is teaching one
lesson and the students, in an effort in "psych out" the teacher, are
actually learning another ... The "split personality" in the lesson
occured as a result of the conceptual frameworks which governed Tom's
actions, rather than being a part of those frameworks themselves.
Tom, acting in accordance with his frameworks, interpreted the students'
behavior in a certain way and then acted in a manner consistent with
his conceptual frameworks. For their part, the students attempted to

guess ahead and therefore acted differently. These actions resulted
in one path being taken by the students while Tom was trying to lead
them along another. (Shirk, 1972i,p. 43)

In the above analysis Shirk uses the classical relation of cause and
effect as he matches causes with personal attributes. That is, he traces
the outcomes, bacle to properties and actions of single individuals!. As a

result he is led" to somewhat discouraging conclusions and recommendationi.
From his finding that "there was no change disCernible within-the conceptual
frameworks", he concludes that the,future teacher education programs "must
be so designed so aa.to be assimilable to the preexisting conceptual frame-
works" (Shirk, 1972,-p. 165). I shall try.an alternate angwer to the teacher-

training problem later but first let me give an interpretation,of the
episode from a different paradigm:of social action.

A descripiion.of the situation ag constituted through the interaction
of the participants can challenge the usual cesal model, cast doubt on
predictive conclusions,and possibly shed light on the use Of language in

the mathematics classroom..

The constitution of.the social-situation. Principally, and taken as
a piece of an ongoing proceas, the episode cannot be reconstructed suf-
ficientiy--neither from-personal variables, from characteristics of the
single partiePant, or 'from'the documented speech production. Hence, from
additional interviews with the.teacher, and from essays and "comment cards"
which the teacher had to write, Shirk has distilled the teacher's conceptu-
alization of mathematics-education, of his role as a teacher, and of the

student's role. Shirk uses this set of statements only to explain the

teacher's moves.
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We do not have any comparable information abput the students. However,
the interactive nature of the process and the mutual relatedness of expecta-
tions and interpretations can be partially reconstructed frets the transcript.
For-the purpose of this analysis consider the table on the following page.

The first two lines in Table 1 reconstruct'the teacher's interpretation
and the students' interpretation of the four parts, (A more detailed
analysis can be developed through following the discussion step-by-step.)
Comparing,the mutual interpretations in columns gives a rough but sufficiently
clear idea.

The teaCher's immediate objectives change following his changing inter-
pretations of the process. "Guessing ahead" the students' interpretation
of the teacher's intentions changes as well. By no means are the actions
of the two sides, teacher and.students, reactions only to the preceding move
of the other side. It is commonly believed that individuals react to the
actions of another when in fact they react to their self-constructed
interpretation. Yet, "reaction" is misleading. Far from the simple model
of stimulus-response,the participant's actions in this social situation are
generated through complicated, internal reflectilie activity. this subjective
reflective activity takes into accoUnt noe only the-actual and perceptable
moves of the others but also the more general interpretations of the situa--
tion, and one's own role in that situation. Furthermore, actual interpreta-
tion of related former experiences exercise an influence on the current
ongoing interpretation. Each participant's actions contribute to the change
of the other's, of their interpretation and their actions. And through this
process they contribute to the change of the participant's own interpretation
'and action. Thus it becomes reasonable to speak of the 4'con3titution" of the
,social situation (Mehan & Wood, 1975). More precisely: The social
situation is constituted at ever moment throu h the interaction of
Es11.2sIk2sitilects. Ethnomethodologists therefore describe "reality
as a reflexive activity" (Mehan & Wood, 1975, p. 8).,

The .episode under discussion is an examr4e of,the constitutive power
of human interaction i.e., the interaction constructs th subjects'
various realities. oth teacher and students act according to their sub-

e

jective realities. /The students draw turn arrows for slides;-the teacher
diagnoses learning deficiencies; and the teacher and students work clearly
at cross-purposes 4onvinced they understand the pituation clearly.

Every moment' is mysterious, as the.understood nOrizon of the moment
is inexhaustible. Every interpretive act indexes this mystery in an
unpredictable %/ay.. A person's every action ii thus creative; it
reflexively alters the world. The person begins with certain materials
that set limits, and then acts and in acting alters those limits,
(Mehan & Wood, 1975, p. 203)

Forms of life are always forms of life forming. Realities are always
realities becoming (Melvin Pollner in Mehan & Wood, 1975, p. 32).
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Table 1

InterpretatiOns'and Chaines

Aspects of analysis lines 39-51 II: lines 52-64 III: lines 65-86 TV: lines 87-155---...,

Teacher's
Interpretation

_

Student's
Interpretation

,

Use counter-example
to strengthen concept.

Disappointment about
student's failure.

.

Having not treated
counter-examples
they think about
easier descriptions.

Prompting will help
the students catch on.

Increasing disappoint-
ment.

There must be something
to say or to do with

l slide arrows.

They don't really know
what a slide is.

Confusion.

He insists on arrows
which connect the
lines.

Give up and reteach
the concept of "slide.'

Resignation.

HetwAnt!..us to play
,

the "reditation
game. II

The actual task,
teacher's view

The actual task,
V

student's view

Co,,,,ect the non-

ex.stence of a slide
to the non-parallelism
of the lines.

Tell if intersecting
lines are parallel

,

Draw the student's
attention to the role
of the slide arrow,

V

,Find another
description. Later
confusion, "Don't
know."

Find out that there is
no slide arrow for
intersecting lines.

Look for new arrows
which might match
intersecting'lines.

Help the students
reconstruct and
recorrect the concept
of "slide."

Tell what you have
learned previously--
"like we said it
yesterday..."

Meaning of "slide
arrow" for student

Move in positive (Opening and changing.
examples one line
onto the other,

.4".................."

di
Any move, straight iw
or turn fa
or up-and-down. 44

,

(Like in part I?
but scarred and
more divergent.)

.

2 Pr)
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3

The ccntstitution of meanin p' Not only subjective interoretation /it'd

aesessment change during the process b.Lt allso the _aims, the setual Mika,
and even the concepts. A.comparison cif the 'llachtir's and the studeetai

rims- during the epiande-of '-the task (set-Table-4i. third-,Tanti-fourth- lines)
emphamises the semantic change. of theproblem situation. Clearly, each
perticipant's vie4 of the actual taik'to be done is different and they'
very during the course of the episode. The teak must les underetood e a
foncti)n of the situation,

For the studenis, the concept of "'slide arrow" else varies *emote the
episode (see Table 1 fifth line). In the beginnine the'previoup experiences
with parallel lines (and slide arrows moving them together) :itt'dominant,
The Intervention of the counter-example and the fellowiog discussion with
the teacher produce doubta *bout where to locate tht berderlines of the
concept. What is-and what is net to be included? ,The students'.interpre-
cation of the teacher's insistert questionvincressingly spoil* the'concept
end leeds to an arbitratk guess ae to ita true meaning. Any type of arrow,
corved or up-and-down, is used by the ,students (see Figures 2 and 3).

Without further information about the students'.thirthingxthe effect of
the roteachiug is difficult to evaluate. Sareirthe residual staeus of the
concept "slide arrow" will, differ from'its initial status,but it miOt not
he improvell Zue_lu-the high affeative loadAuring.part.11the concept_ 2

tiov might be vulnerable to teture'misunderseanding in similar eituetions.

Thus, the logical 'rinciple of identity is eot applicable. The word
"slide arrow" does not (Lena the same to every participant. Moreover, the
meantng chauges durine t4t episode repeatedly and remarkably, But, if
problem eed cOncepts,becope functions of the situation inetead of being
constant and stable, it then becomes necessary to eeneider the ece.e,e1 constL-
rAtion of menning, the constitution of meautn thrniAt_hapalliamas

Herbert -Moser (1969) makers the sat* point; "Syrarolio _nteractionism
sees meateinge as social products, as creations' that are formed in and through

defieing activities tA people as Jtey interact" (p. 5). Wwever, as a
matter of orinciole, there. i9 small chance of predicting the'onteomes of
sneh epleeties at their beginning. Nor ls there,m4ch chance of making pre-
dietions about i) later 5tage from the'basis ot'a preceding one. Since we
caneot ascribe the Qoostitution w4aning to one single participanr(e.g.,
the teacher), ue are ott to a ositiowto use cansal models as adequate
Oescrip&ors of inflivtdoul SOC.i0 interaction, particularly nut of mothemat
teaghtog 4W. Wurniog, . "As cvey day meanings du not meet the canons Ot
-10Wo oey 4rc ttawNfm'r0 hy destription These traolf rutted

mesnOws mr:vt4,31 !: Qf.omuok 'IrrAH, rvetry day life 0 not" Otilan
p,

d';\ t1.1-1)Ifq, eAw: .1!:"C It(OS i.(0.1" * t- IittthersVfl tt. T.

.

,','
6j, Vhws.-,;.0 Li'4wiviv; , ; bw:7- tq
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differen; than,in the natural iciences, For example, they are rules abcut
the constitating of situations and meanings rather than rules about the
attuations aod meanings themselves. They are rules' about structuring the
process rather than about the structure of the process (see Mehan, 1978).
In the huMan scienves the interpretation-assessment paradigm willoreplace
eha eanee-ef fee t parattipp horrowed from. the metural sciences.

The above episode also prompts a neu Look at the
role of language in mathematics teaching. Yeara ago,linguistic research
would have used the utterances in Shirk's episode for a syntactical and a
sementic analysis of the material. For example, tbe analysis mia J: have
pointed to a lack of adjecttves. Or, it might have noted that the units
of speech consist only of short or btokett sentenCes, that paratacticsl
structures dominate, or that many deictic words appear (words which
demonstrate or point to something--"here," "this," "there," etc,),. With-
out any additional information the analyst would speak of a "restricted
code" aod perhaps a resalting poorly developed meaning.

It is the fundamental idea in Chomsky's theory (1957) that we cannot
reconstruct the constitutional proceas of communication from the surface
that is, from recorded speech, Neither "discovery-models" (for the
eovery of new grammart) pot "decision-models" (for the decision about the
adequacy of a grammar) will work, Chomaky maintains that these models
only make tole of the linguistic data, Since we have to analyze the roles
of ttructorinz commenical'iomue must _analyze evaluetive etructeres nf
individual ineerpretation and ass,ssment,and this analysis requires an
"evaluati a-model" (for the evaluation among existing grammars). At this
point there le a change of paradigm from objective (lingeistic) data to
interpretative structures as the ohlect of analysis. Since Chomaky's
worklsociolinguista have increasingly scudied the use of language in social
Oteraction.

An interesting and helpful Osne is the cencepl of indexicalilv If
there i9 nu further informatton then moNt pe:41e will. not understand thu
dtscoizrse in lines 41,51 of the episodo

411 Nope,.

Why noC'

K. The7 crowi e40) 61,hcz,

4C. hkL! 1 a, acenrAllw t wViO, vf,A ,4d.,! 1.0:13ii T,-:.!ItO.

4',, i!tw, iI'''' ',2.°. thf-.,,

Owo
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49 T: Whet Reggie?

50 R: Um.

51 K: ... They won't come together ;.. (Shirk, 1972, p. 173)

Mathematics educators may even become doubtful about the topic and
meaning of the discession if they don't know that the'documant is related
to mathe7atics instruction. Bar-Mill-el (quoted in Mehan & Wood, 1975)

defined such "utterances that require contextual.information to be under-
stood" as "indexical expressions." Thus an "informed" outsider can even
have difficUlty understanding what is going on in a discussion. It is
difficult to realize what the participants intend to say and to identify the
meaning they create in the giVen situation. As t prerequisite for communica-
tion, participants have to share common understanding which they take as
an implicit basis of reference when apeaking to each othee. While Speaking, ,

each participant anticipates the understanding and the interests of the
specific addressee. The speech gets organized through the expectation of
what the addressed person already knows. Each speaker uses his interpre-
tation of the given situation and of the addressee as an index from which
he forms his utterancea and from which he decides his "choice of.gramear."

In the classroom, the "teacher's instructions are indexical expressions
which requires teachers and children to employ contextually bound interpre-
tative practices to make sense of these instructioes" (Cicourel et al., 1974,
p, 129) What a participant says not only transports the intended,message,
but over and above the message the utterance contains information about
his understanding of the topic, his interpretation of the Situation, his
expectations of what the others might know, ar well as hia.present emotional
concerns.

Hence, indexicality is another libel for the thesis that the situation
intliatmll_hatlitaggiu is used. Not only are content snd.meanings negotiated
and constituted in the social situation, but also the use of language and
the performance of the speaker are 'co-determined. This is true for both
the syntactical structure of the utterances aRd for the actual choice of
words, (From this point of view Bernstein's distinction (1973, 1965) between
"elaborated" and "restricted" codes might be more aa issue of the indexical
and reflexive constitution of the situation rather than of the competence
of the speakers.

Mathematicians, in particular, have invested much effort in producing
universal statements, and most school mathematicians would claim any mathe-
matical statement as non-indexical, i.e., as universal and objective, Hoe-
ever, this conviction bloeke insight into the irreparable incompleteness of
utterances, and more genera', of any symbolic action. Each utterance, just
as each nymbolic fora, is necessarily incomplete, because it has to be filled
in witb meaning via coltextual interpretation. Through its genesis and
chain ef definition a cencept inevitably gets infiltrated with contextual
information. Ane "every attempt at repair increases the number of symbols



25 -

Bauersfeld

that need to be repaired" (Mehan Si 'Wood, 1975, p. 93). Therefore, under-

standing mathematics is not only a case of logic, or of divergent thinking,

or of proper definitions. As far as understanding is realized in social
interaction (or through communication, which is the very same thing) it
inescapably becomes dependent upon the interpretative, indexical, and
reflexive constitution of meaning.

Four Deficient Areas of ResearchMathematics Education' Hidden 4meneions

The process of teaching and learning mathematics can .be viewed most
aptly as a highly complex human interaction in an institutionalized setting--
awinteraction which forme a distinctive part of the participant's' life.
Four aspects in thip issue deserve more detailed disaussion since-they
represent weak areas of research.

1. Teaching and learning mathematics is realized through human inter-

action. It is a kind of mutual influencing, an interdependence of the .

actioras of both teacher and ttudent on many levels. It is not a unilateral

sender-receiver relation. Inevitably the student's initial meeting with

mathematics ia mediated through parents, playmates, teachers. The, student's

reconstruction of mathematical meaning is a construction via social negoti-
ation about what is meant and about which performance of meaning gets the
teacher's (or the peer's) sanction. "Symbolic intetactionisth sees meaning

as social 'products, as creations that are formed in end through the defining
activities of people as they interact" (Blumar, 1969; p. 5)n How' can we

expect to find adequate information about-teaching and learning when we

neglect the interactive constitutian of individual meanings?

2. Teaching and learning mathematics is realized in institutions
whish the society has set up explicitly to produce shared meanings among
their members. Institutions are represented and reproduced through their
members and fhat is why they have characteristic impact on human inter-
'actions within that which is institutional. Institutions establish norms
and roles; they develop rituals in actions and in meanings; they tend to
seclusion and self-sufficiency; and they even produce their own content,

in this case, school mathematics. How reliable are studies on the effects
of mathematics education if they,do not take into account the institutional
imptct on teacher and student? The question becomes crucial when one
thinks about any application of knowledge learned at school to situations

outside the school.

3. Mathematics education constitutes a dfetinctive 2Aiitafthe student's
life as well ap the teacher's. Anyone who is active in mathematics will
learn something about himself, especially since the activity happens in

interactive situations, On the other hand one can learn mathematics only
by 'actively engaging his previous knowledge of related subjects and actions.
therefore, mathematics education is deeply related to the man-made world
of symbols and meanings, to common sense, and to everyday life. Mathematics

education depends on our social and historic conditions. How can we dare
to make any prediction shout the mathematical abilities of a stuOent and
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about his chances to tavelop these abilities if not by carefully relating
such statements to his personality and background?

4. Scientists are not the, only ones who haVe difficulties dealing
with.highly complex issues. The orientation for actions and_decisions
in the claisroom continuously requirea the reduction of complexit . On
the other hand, the underatanding ,and the effective-reduction of-complex-
ities demands their total unfolding and complete Oconstniction. To date
scientific analysis has been incapable of reducing the complexities of an
actual mathematics classroom sufficiently for guiding a teacher's decisions.
Yet'without such guidance it is 'impossible to plan effectiv,,:eacher-training
programe.,

Fundamental Problems of Research and Develamant

Within the last 3#eare,mTview of the structure of the clasezoam proce'ss,
has changed as a result of collecting information from aeveral disciplines,
participating in mathematics lessons, and analyzing rideo-tape4 mathematics
lessons. This subjective change includes the aims cf my work, the subject
to be studied, the methods of research, as well as the underlying paradigms
of my thinking. This personal event is, worthy of mention since discussions
with colleagues leads me to believe that my subjective difficulties only
mirror much more fundamental difficulties within our profession. Philo-
sophers Of science agree that such difficulties within a profession are
strong indicators of fundamental change of paradigms.

In the present transition stage three theees seem to be of importance:

1. Mathematics education is deeply in need of theoretiéal orientation.
We have too much research on too small a theoretical basip. Many opening
addresses of APA, AERA, and SIG/RME, as well as journal articles from
within the lastyears have eomplained about this problem, e.gi, Lee Cronbach
(1975), Lee S. Shulman (1979, Note 1), Ernest Hilgard(1976, Note 2). Per-
haps there are too many short-termed research contracts. Perhaps there is
too much prescription for "acceptable" research programs. Or, perhaps,
there is no support for methodological heretbas ind thus no encouragement
for young researchers to try unusual approaches. For sure, there has yet
to appear an adquate forum for theoretical discussion (compared with West
German peblications,the United StateSprovides for very little discussion
of atetatheory.) Whatever the cause, I do not believe that there are not
enough new ideas.

2. Research and practical developments follow dIgLemIt_earecligma.
The main stream of research still follows the paradigm of the natural
.sciences, stating an objective educational reality, using well-defined
and qUantifiable concepts, and analyzing the relationship among them
through statistical means. For a long time we'have heard and accepted
complaints about the complete lack of classroom applicability of research
results.- (See Kerlinger, 1977, for a sum-up from a researcher's view.)
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On the contrary, the majority of a teacher's classroom decisions
are made via common sense and intuition rather than through rational analyses \

by scientific means. If she/he is a good teacher then her/his actions are
based on a more differentiated pirception of the classroom events than
research,recognizes. She/he is more open to contextual changes, "knowing" a
student, using "tacit knowledge" (M. Polanyi, 1906) and informal reflected
Amperiencoa._Compared_with_these."hard7_social faets,_cilrrent
appears as "soft-mare." It is necessary that research-in mathematics
education takes notice of this gap if ,a claim for practical relevance is to
be established.

3. Interdisciplinary,approaches are promising, if,not necessary, fdr
closing mathematics education's "credibility gap." Within the broad area
of social sciences)the discrepancies between rationalistic and hermeneutic
descriptions, between naive and scientific constructsihive.been realized
and investigated much'earlier. It is time to integrate these findings into
our profession and to transform this knowledge to the specific conditions
of learning and teaching waLhematics.

eillike the natural sciencesothe,human sciences must deal with an
objective social rdality on the one hand, yet on,the other hand must deal
with as many realities as there are reflective subjects. Paradoxically,
modern physicists have a highly developed understanding.of explanatory
models losing their meaning in the light of more comprehensive theories.
ror ekample, the question of the "divisibility" or.the "consistency" of a
light quantum (photon) makes no sense in a general theory of elementary
patticlestbecause the theory describes -tie relations among elements but
is not concerned with the nature of the elements themselves. This is,very
near to an importaht issue of constitutive ethnomethodology. The structuring
activities of the'participants form ("constitute") the social situation
among themselves, and the process and rules of these "struoturings" (as
Mehan calls them) build a core theory of social action'. The theory is
related to structurings rather than to structures of the situation in
usual social sciences. That is, there is greater generalizability within
the process of structurings than within'the structures themselves.

Teacher.Tieina cheL_T

Those who find the discussed theories and interpretations more qt less
acceptable might find themselves forced to think about consequences. "It

seems likely; that innovation In schools will not be of a very radical kind
unless the categories teachers use to organize what they know about pupils
and to determine what counts-as-knowledge undergo a fundamental change"
(Keddie, 1971, p. 150). Shirk's (1972) findings about the stability of
fundamental conceptualizations across teacher training apparently do not
leave much chance for that change. How ia it possible for a beginning teacher
to overcome the sixteen or more years of his own 'experiences as a student?
This problem is especially difficult, since the contextual force of these
experiences often dominates any later verbal information about education
and leads the beginner into an almost unconscious reproduction of the school
system's characteristics.
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But, if we form our cognition and behavior about teaching through social
situations, then we can also change this formed cognition and behavior through
social situations. We learn to behave in social settings only through the

4 reflected participation and action ir social settings. Similarly, a teacher
will learn to teach or to change his teaching pattern only ,through reflected
teaching: Yet, this is not the ruling model of present pre-service teacher
training.

Usually the student teacher learns about teaching in contexts very
different from classroom situations. The organizing interest for picking up
knowledge in lectures ia more along with passingexaminations then related

.

to later classroom application. Through various loctures and seminars the
student teacher collects incomplete eclectic knowledge and she/he is left
with the Unassisted task, of integrating this knowledge into an applicable
system for the living classroom.

If the constitutive power of social situations on behavior, meaning,
and language is as strong as assumed here, then the student teacher will
havetto spend much mare time planning, accomplishing,and reflecting upon
real classroom teaching experience. From the very beginning ihe teacher-
to-be must encounter an adequate complexitY of'social classroom exchanges,
"Adequate" means that the complexity of the teaching-learning situation
might be reduced.in'quantity, e.g., via,a reduced number of students to teach'
or a reduce'd amount of lesson time, but not reduced in quality (as simula-
tion games or videortapé analyses, e.g., would cause). If we claim to educate
human beings, then a teacher will have to receive a much more careful,
holistic preParation.

'This, of course, will require support and development on the side of
reaearch as well. And this research, at least a reasonable part of it,
will have to follow the interpretive paradigm. "Science ai its best is
thus like a firm but gentle hand hat holds a butterfly' without crushing,
it" (Kenneth S. Bowers, 1973, p. 332).
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INTUITION AND MATHEMATICAL EDUCATION*

E. Fischbein
Tel-Aviv Untvertity

.Israel

Intuition

Though the concept of intuition has various meanings and has been
defined in various forms, there is a common feature which is always
mentioned: intuition is immediate knowledge. In other words, an intuitively
accepted truth.is self-evident; its aceeptance does not require any

, explicit prOof. For instance, We accept directly the statement: "The
shortest way between two points is the straight lines" or qt is always
possible to find a natural number greater than any given nature4 number."

A great paA ef mathematical axioms are based on such self-evi4ent,
,intuitively accepted truths. On the other hand, there are various mathema,tical
trutha which contradict intuition, and learners often have difficulty
accepting these truths. For instance, it is difficult to accept that the
set of naturarnumbers is equivalent to the set of positive even numbers.
It is difficult to accept that the set of points of a segment is equivalent
to ehe pet of points of a square or of a cube.

My opinion is that the intuitiNie reaction of the learner cannot be
neglected by mathematical education for the following reasons:

a) Wrong intuitions render difficult the acquisition of correct
interpretations in a given field. Even if the student has succeeded in
learning the scientifically correct version, it is not certain that a primitives
false interpretatiqn has been eliminated. The survival of such wrong
interpretations may ehdanger the adequate use of correct knowledge,especiaily
in non-standard situations.

b) Correct intuitive interpretations are able to stimulate productive
mathematical thinking. Pure,formalS symbolic representations of mathematical
truths are, by themselves, not efficient at mental tools, espocially when
the solution to non-standard problems is requested.

Some Characteristics of Intuition

Some general properties characterizing intuition are:

1) Self-evidence. This basic characteristic was already mentioned..

2) Coercive effect. As a consequence of their intrinsic obviousness,
intuitions exert a coercive effect on the processes of conjecturing', explaining,
and interpreting various facts.

The first three parts of this paper summarize (with some modifications) a

paper presented at the Second Conference of IGPME, Osnabriick, 1969.
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3) glitranolative ca acit . Intuition, like, analytical thinking
transcends direct, empir cally obtained information. Specific to intuition,
however, is that it reOresents a mental leap which cannot be completely
justified by logical or factual arguments.

4) gl2bAlity.. Intuition ie described as a glowil, synthetic-Vittei;-7---
as opposed to analytical thinking. Being a condensed view, intuition is
frequently expressed by visual symbolization,

5) BULEtabililx. Intuitions often exhibit high resistance to
reaching influences and to formal experimentations. As already has-been
mentioned, primitive interpretations may remain active even after the
student has acquired corresponding, correct ihformation. We shall return
to that point later.

A Classification of Intuitions

A. Several cate ories of intuitions can be identified.

a) Affirmatory intuitions are self-evident repesentations, inter-,
pretations of explanations. The previously cited exaisples refer to affir-
matory intuitions.. Let us add some more examples. It appears as being
self-evident that: "The oppoaed angles formed by two intersected lines are
equal." Or, "In a triangle, each side is smaller than the sum of the two
other sides:" Finally, "Through a point outside a line, one, And only one
line can be drawn, which is paraliel to the original."

b) Anticipatary_inIniLions are preliminary,, global views which
precede the analytidal, fully developed solution of a problem.

c), Conclusive intuitions summarize, in a globally structured vision,
the basic ideas of the solution to a problem previously elaborated.

B. A second classification refers to the ori in of affirmator intuitions..

a) Primary intuitions are interpretapive or-explanatory beliefs
which naturally develop in human bdings, before and independent of systematic
instruction. Such intuitions are profoundly influenced by the cultural
setting. For instance, we .have a natural, trimensional non-isotropic rep-
resentation of space. Another primary intuitive representation, weight, is
an intrinsic quality of objects. This does not mean that primary intuitions
are fixed forever; On the contrary, they are largely dependent on our

personal experience. What we mean when speaking about primary intuitions
is that such intuitions develop naturally in the child as a result of basic
daily life experiences.

b) SedondarI_LILuLtiall are those which are developed by systematic
intellectual training (generally, in the school setting). For instance, to a
physicist it seems natural to affirm that a body keeps moving with constant
direction and velocity if no force intervenes. This is a secondary intuition,

3?
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which contradicts the priMary intuition'that a body keeps moving only if a
force acts on this body.

The above classification implies the following fundamental hypothesis:
Intuitions--though appearing as givens (i.e., as produced by some a priori

meckehists) are, in fact, changeable. Ihty_mull_plat,
transformedt corrected,or eliminated as a result of adequatg_14Alatta.

A corollary is that even learned tru hs elaborated by_s_higtitcsultas
'once tual s stem can attain the characteristics of intuitions,"i.e.,
brme accepted as natural self-evident truths.

, ,

C. Optsrational and content- riented _intuitions. 4

-

a): Operaci.a.aal intuitions are those which eXpress the'feeling of
validity which accompanies logical operations: For ihstance, in a sylldsism
the conclusion is determined by'the premises, but th4 validity of the
syllogism, as.a method of deducing a truth from previously accepted premlses.,..
cannot be provekwe must accept it by intuiti(a (Dating, 1941,:ifi'Westcott,
1968,' pp. 17.619). It is by intuition that we accept lthe universality of

.

inductive inferences.
\

Generally speaking, the axioms of logical thinking-are based on such..
fundamental beliefs. Mathematical education should not be.satisfied with

automatic-intellectual-skills.corresponding'tO the laws of
logical thinking. New intellectually adequate:beliefs, i.eN, intuitions,
must be built ih correspondence to the learned truth tables. For instance,
it is easy to teach the puOil the truth table of implication. But the
problem is that he must get accustomed to feel the rules of implication as
obvious and to act accordingly. Such intuitions must be developed as content-
free mental structures.

,b) Content-oriented intuitions refer to representations, explana-
tions, or interpretations which expresv-in a correct or in a wrong manner--
our mental attitudes toward reality. Elementary space intuitions, elementary
chance evaluations, explanations and interpretations of physical phenomena..
accepted as self-evident,etc. belong to this category. While Operational
intuitions are related to the formal schemes of our logical inferences,
content-oriented intuitions are related to phenomena as such. 'Of course, in
concrete cognitive processes both categories -are strongly interrelated..
There are intUitively meaningful mathematical operations which belong
simultaneously to both of these categories. For example,, many geometrical .

transformations can be completely integrated in a logical reasoning without
1osin3 their iconic sighificance. The statement,"The product of two line
reflections is a translation", has a full pictorial intuitive meaning. At
the same time; it is a formal; a priori acceptable truth.

The Nature of Intuitions

Do intuitions really have essential features in common, or has language
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simply equated various for ms. of.cognitive reactionvon the batlin of some
external, accidentally similar aspects? IetUitions represent the baoic .

mental mechanisms for connecting knowledge ilLii.action.. $ trictlY speaking,
knowledge in image, i.e., an internal, aubjective replication cf object'!ve
realities. ConcIA'rently, krwwledge le Basically oriented towards action:
-the basic lole ofknowledge is to help prepare for action In the case pf
senaory pereeptions, the transition from representation ti) action May be
direct perOptive (sensory) representations of the-concrete features
of. real obiects and events describe--and thus prepare--outoseible actions
on thcm (on the basin of previous. experience). By dimerimineting and

.

sTntheeizieg signals, by evaluating.distances and intervAls,.we &miner:4ring.
and liciting adapted, efficient reactions. Generally, perceptions are so,
directly implicated intt action (by thtir origin and structitre) that by
themselves, they can prepere and:direct action.. In. Pavlov's termiemlogy,
perception* com:titute. the first signal systc).

it iv nbt the same with symbolic forms of knowledge and, particularly
with logical, anaytical thinking. Solving a preblem by analytical.pro
cedurca t,, mote or lfw, looting process. An explicit, logical process
le tiov.co4s4ming. Very often. itcannot be,effective if a:direct, prompt,
rapid form of aAaptation isirequired. jam_egnibnA.the.AlatatiAl,n4e Of
intoitiun in to translate agalsat ac uisitions into' terth '4)f action.

.'.

Intuitioqs_khiTe%esssntialleetures with the. iconic .forani4LAITAIdas.

11042)14-0101% tq-VnanqiltE:-PAPETation,directlX12.1.S.ETP df-PaSSical dect:.
1t9gt. Me following example illemtrates this point.

,,;u0p0;)e, 'Oak intend :to ctoss the street, and I look left to.ome If
alA vehicles ac4-e app:oaching qUickly evaluate the nuMbet of vehietc,,,
their (decreasittO dPmance, theit speed, and the width of the street
intend to cromi, ln 'teas than 4 second lAget ,morhing which may be tenmed
at 4 "behavioral coactusion" 1,decide tO crobb the. street .or I decide to
enttone to wait, It I decide t:o move, the decision includes speed old
directioo .go tact, in-such a situatim, perception, evaluation, decision-
cling,,00d 'effective behavior are deeply interconnected,, 'When eStimating
the-distance and the fipeed of the approaching cars, the distAuce I have to
cove4 in ordet to teath the opposite cidewa1 k4%etc., 1. got a unique, global
feprosent3ti,A .the_viivte situstion This global evaluation includes n
eniticfpation tite efiorts and reactions Which will enable we to

Atuation. The perceived, estimated dtstae in tactv
a ftrect 0,1.;* effort6 to ciNet that distanc,
ptcpari4tqn fot approviec, citevtive retictont

fet4411,f1A 005 ppok ced afiy connucttve fe'k go4ding actiPn,
erk:T'W tttfw v6wonhltny; oi action, Me icontc anl the el active.:

r:A4-.fion 61 tepteWi00 aredeepty finterconhected hy scusorimotor mechanisms,
4 01 t'olt tANe sam. sytb04c im-Lm ut representatio ry tkc

TteqcwAit' h01.on t( A ilfikAtooVsyw vottnecti
.041 06:00 ;w0a-14K ..4m4 the cmicuttw,. oaeuvo-6,1

6.Y!' krliA0.;o0 6Lt.cn enactlAw apid t4kr,

AlaMeaMsemuayM.r.um-....maaa...vormrrmmaYamma..m.a.m............asteamasur
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Intuitimi la, simultaneously, 4 derived form of cognition--as thinkiee
isand a programme for act?on, as perception is... intuition and perception
have esaential CQMMOft features and for this reason the termintuitive knowltiet
is sometimes used for deneminating both categoriea. Both are global, direct,'
effective fortmiof information.

The differences between intuitionas a specific,form Of knowledgeand
perception is that intuition does notidireetly reflect an object pr an event
with all its concrete qualities. IntUition is mostly a form of ipterpretation,
a solution 19._ iusntyesk, i.e., a derived,fom of knowledge like Bymbolic
knowledge. On the other hand, the difference betw en intuition.and analytical
thinking is that intuition is noteanalytieal, pot 45acuraive , but rather a .2

eompact formof knowledge ,like perception. Like p rceptión, i9tuition does
not require extrinsic justification. With percepti n we have the feeling of
being plunged directly into.the world of material o4ects. ?erception appears
to be reality itself rather than just appearance. Wj.th intlition, we havt
the same feelingof being in the object-and not a siMpte, interpreter of ix.

Being a derived form of knowledge like analytical. thinking, intuition can
organize information, synthesize previously acquired experiences, select
efficient attitudes, generalize verified reactions, and guess, by extrapolation,
beyond the facts at hand. The greatest part of the whole process is unconscious
and the product is a ciyatallized form:of knowledge which, like perception,
appears to be self-evident, internally structurediand ready to guide action.

-In its anticipative form, intuition' offers a gTobal perspective of a
possible way of solving a problem and .Chus, inspim*.and directs the steps of
seeking zad building the colution in its conclusive- foTr, the role of
intuition is to condvise--again--in a global, compact view, an analytical
soluti,:n previously obtained. In this torm, too, the role of intuition is
to prepare action. That finlf, concentrate laterpretotion is destined to make
the solution directly useful in an actom, productive thinking procoms,

Before continuing, one remark is necessary'. When speaking about action--
in connection with intuitionwe reierring to both .'w.ernsll and int,p1.

lectua4 octiov.w. The extercal ones are the Primitive correnteS of intuikOns
'Direct spatial ond time etimatiofiti, rudiwentary forms of distanCe evaluations
apd of relativc frequency evaluattono, and global comwitionn, am example
of thi9 type,

On the ethet 4and, while thinking, while mentally exkrimenting, while
elahorw,ing an explanauon, or whilfJ,' lookinn tor a new theoretical model,
we are alliw )0(1 thi9 cac, Qell, wy need "au intuAtive view" to
infipite, to guide, t.o d mentia attoo--to keep the meht40.
plocwA movinv, in a productive directiw.

eti9entiJt tunviion intuitiou to Rw tho..? homoloplw
ut perceptiw4 -1,41.',1 -.4ffie 1161,,,cioptitcw )0,

110. vIhk,



38

Fischbein

After the emergence of the elementary corcepteal structures in the
child (at approximately age 6) and before the appearance of operations
(age 6-7), intuition is the main form of a child's thinking.' The child
does not,possess the operational schemata (characterized by composability
and reversibility) which are the basic eonditions for Logical, analytical
thinking. Consequently, the child thinks at ehis stage by restoring to
global, half-articulated configurations in which the direct, impressive
featuree have an essential role. At this stage, intuitions are not only
particular moments of ehe process of thinking, they are the proCess of
thinking itself. Fur that reason, Piaget terms that stage the "period of
intuitive thinking."

1192213.01.5iiked ILY-ElAB2S-22-kting-12.9SiftLeta-glt-EtKied of intuitive
thintsing (4-7 years of age), all the features.of intuitive thinkin are,
in fact, conion to all ofshLyailnus forms of intuitions which ma be
encounterILLAwiLlye4.

In other words, intelligence does not abandon its'intuitive form
when operations appear. Intuitive knowledge is not an immature, transi-
tory form of thinking. Rather, when operational thought appears,'intuition
continues to survive as a complementary form of thinking. At operational
levels of thotight, intuition functions as an effective form of cognition,
better adapted to action than analytical discursive, time-consuming, logical
knowledge.

The above hypothesis has a direct, important.implication If intuition
is a condensed, practically adapted version _of some information, solution
or interpretation, then intuition also hassiomething to do with previously
acquired experience. This does not exclude the possibility of a priori
schemata intervening in our representations of facts. But it is natural
to assume that if intuitions prove themselves to be useful mental tools--
adapted to the particular requirements of certain classes of situations--
then they must bo the result (totally or partially) of ps4A2nA1 _unsi:isa1

ex uts,...ILLifaeS.

jntnqions. and S19ntal

.1f intuitions are the product of experience, then are they merely
wc11-establiAled Mental habits? Is there anything more in an intuition
than in any well-structured, mental system of skills?

intuiions cannot he reduced to mental habits. A habit is essentially
ei stabilized manner of acting in response to a class of situations. An
intuition it; primmily a spsililloR, i.e., a subjective refLection--correct
or not--of scome real factN. Ihe novelty of this kind of cognition is that
it adapted of ilction. Although intuition
is, gonerally, a derived form of cognition, like conceptual knowledge,
has the fe;Anres of being immediate, inner-tructured, self-evident and
coerciveAl of which are characteristics of percep Jpn. Being like
perception6 and as a rerult or th0r coptmon intuitionv, have
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the role of preparing and guiding action. So, intuition is generally sbape
by practice, in connection with a defineC category of situations. But the
product of that experience is not merely a mentalor practicalhabit. It
is, rather, an lame, an latuiulasiEs, an elelee.ti.on, which, by its intriusic
nature, can be dirictly andkadilellx traAslated into terms of adapted
reactions. (Recall that by the term Astiga is meant 'both external and mental
forma of attivity).

Let us take a few'examplea:

Consider the formula for solving quadratic equations. Knowing the for-
mula, possessing ihe corresponding skills for using it automatically, does
not generate any/intuition. So, intuition is not merele i'well-established
mental habit. ,In other words intuition is reit redudible to an algorithm.
It must.be sotething more.

For a Afferent example, consider the formula fOr calculating the number
'of permutaglons of n elements. 'The forMula is P(n) e TO With one-element,
teere is, 'of course, only one poesibility. With two elements there are two
possible/permutations. This is intuitively evident. Now add a third element.
Each of the two previously obtained permutations AB and BA, will provide
three permutations because the third element, C, may occupy three different
places:

CAB, ACB, ABC, CBA, BCA, BAC

neeemresentation of how sermutations can be built Nthpa_42liciills_aus_
and more elements is an intuitive representation. When adding a fourth
element, each of the above obtaieed.permutations will provide four permute-
tione because thete are four different places for introduding the fourth
element.

Intuitive understanding is sufficient for reaching, by extrapolation,
the general formula: P(n) e 1.2..3...n = n! Is this formula,a mere algo-
rithm or does it express something more? After realising how the formula
was deduced, we reach a level and a kind of understanding which is beyond
the simple knowledge of a programme of action. The process'of successively
multiplying by 2, by 3, by 4, etc . amesses clieeeetelyeetheeneeeeetebuilding
the permutations. The formula P(n) e 1.2..3..4...n contains ineieeeleeellic
ememIL structure its "ustification. When recal,ing the formula, one
recalls in a direct, global manner the basic idea of how permutations are
produced as a function of the number Of elements, and eta they are produced
in that manner. This is more than a mental skill, i.e., more than a simple
progremme of action; it is Dualm the meaninastl_Raness"wi.th an extra-
2211,tivejsupective in min0.

Briefly speaking, intuitions axe mental structurekl based on previously
accumulated experience and expressed in an interpretative and predictive
form of knowledge. Therefore, intuitions are generally based on systems
ot mental skills. But mental skills do not, by themselves, entirely explain
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the particular nature of intuitions. Accumulated experience, in a given
field, must also be expressed in an interpretative and predictive global
view. Some kind of induction, largely performed unconsciously, is probably
the main source of that global representation. Intuitive acceptance involves
a feeling of obviousness which is the effect of congruence between justifi-
cation of an interpretation and a programme of action.

latillaSTLITLIIMWA

A second aspect which has to be taken into account refers to the role
of images. Visual images (graphs, schemata) are often used to provide mathe-
matical statements with an intuitive dimension. However, ap image is.not
an intuition by itself. In order to be an intuitive way of understanding,
the imeage has to be included in an active process. The role of the image-
intuition is therefore A double one: (1) to unifit, or synthesize, informa-
tion and (2) to prepare, guide, or anticipate action (on the basis of that
information). Therefore, a visual representation will be able to contribute
efficiently to an intuitive understanding of some mathematical truths if

ILSELL3LIEMILAILLIZI"Es of #22,22EmahAlmiattlit9..tual_etam.

Return to the example of combinatorial procedures. Suppose we want to
use a tree, diagram for solving a combinatorial problem--for instance: Haw
many numbers of three figures could be obtained from two given figures:
1 and 2?

The corresponding image is:

1

2

Now, the question is: Is that static image sufficient to elicit an
intuitive understanding of combinatorial procedures?

The question is trivial and the answer is evident. For a solid intuitive
understanding, the pupils Tat_Lpj_irtis_ipat_c_inthebtrocess.. That is,
if the tree diagram is included in a building process and if it symbolizes
a building procesS, then it will be interpreted as a programm4 of action, and
thus will gain intuitive efficiency.

Let us take a different example: an intf,itive concept of geometrical
locus. To teach such a concept, a teacher could present the pupils with
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some drawings; a circle, the perpendicular drawn on the middle 'of a segment,
.

an angle and its bisectrix, etc. These can be used as examples of the
- concept of a geometric locus. Moreover, they are represented by visual
images, liowever,..such static images cOntribute little'to,an intuitive
understanding of geometrical locus. They lack a constructive, dynamic
coiponent. The circle, ihe bisector, etc.,mmst emerge as a Gestalt from.
$1...e_teetaLgointhie_h_jarrektettjacawnbtl_limself, inconformity
to 4 given rule...The formal proof comes afterwards. .But thq intuition'
of a specific geometrical,locus (and, by way of generalizatien, of the
concept of geometrical loci in general).can be obtained on/y by joining,

.

in one single "vue d'esprit" the deductive and the constructive, the iconic
and the enactive aspects of the concept.

The graph representing a function is not only an image, an iconic
translation of a concept, it is also an essential conceptual aid due to its-
intuitive features. It represents in a unique, condensed view, the Anoka
of a mathematical relation.- It suggests not only a limited situation (for
instance, as,a result of the variation of x between a and b),.but the

-trend of the whole.process.

kituitirm and kcp_trice

We thus come back to one of our basic assumptions: intuitions have to
play a constitutive role in an active demarche; but they cail only be,elaborated
in the course of such an active approach. By way of merely formal, verbal
explanations, it is possible to teach only a conceptual structure. Such a
structure may appear to be very convincing from a formal, logical point of
view ("I am now convinced that this must be so, because I do not find any
lacuna in your proof"). But the learner may add: "In spite of this, I
do not feel completely comfortable with your statement."

In order to overcome such a conflict i.e. in order to create a
zgalE2A_Intuitive acceeteinge of the statement both the roof and the
statemenl_mgLiaeglysliabehavioral dimension. Such a behavioral,dimension
can be created only if the student has the opportunity to be personally,
practically, and experientially involved in thc process.

Probability is an area in which students often lack a good intuitive
background. It is in this domain that the role of experience in creating
new, correct intuitions can best be shown.

For Piaget and Inhelder (1951, 1975), the concept of probability can be
understood by the child only at the formal operaticaal level, ap a synthesis
between chance and deductive operations. In fact, that synthesis does not
generally occur spontaneously at the formal level. My explanation is that
current science education is almost completely oriented toward elaborating
deterministic forms of thinking and interpreting. Consequently, a lack of
equilibrium appears between the two components. As an effect of actual
school education, students will assimilate various mental skills and intuitive
forms of interpretation, helping them to cope successfully with deterministic
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situations. On the other hand, when facing (even very simple) problems
referring to random events, students will frequently give wrong solutions.
They are lacking not only the,corresponding technical procedures, but first
of all, basic, correct mental intuitions--what Freudenthal (in this same
monograph) calls "mental objects."

Let us take an exaMple: In an attempt to teach twelve-year-old pupils
the concept of probability, a teacher began with the concepts of possible,
certain, and impossible events. Next, the teacher gave various axamples of
certain events and chance events--using boxes containing colored marbles,
e.g., white and red marbles. For example, from a box 'containing an equal
nUmber of red and white ilarbles, the pupils had to draw a marble at each
trial (with replacement). The experiment was performed by a group of
5 pupils--each of them performing 20 trials. After a hundred trials, the
record was 47 reds and 53 whites. The teacher concluded: "As you can
see, the number of white and the number of red marbles drawn are very close
(47-53). They both are close to 50. What do you think: Will we get similar
results when replicating that experience? In other words, if a different
group of pupils repeat the experience in the same conditions, will we again
get an approximately equal number of white and red marbles?" The pupils'
answer WAS negative: "No, we cannot predict anything because the out8omes
are random." What is lacking is exactly that synthesis between the possible
and the necessary which characterizes the scheme of probability. This is
not a matter of a computation procedure. This is a matter of "mental
objects." The pupil is not yet prepared to' overcome the contradiction
between these two opposed categories of events (certain and random) and to
understand the possible rationality, the possible predictability of mass
phenomena. In Piaget and Inhelder's view, probability is one operational
schemata which (together with the schemata of combinatorics, proportion,
etc.) characterizes the formaloperational period.

I do not exclude the possibility of describing the concept of probability
as an operational schema. I submit, however, that the-capacity to understand
probability and to correctly Use probabilistic procedures requires some
specific intuitions. The basic intuition,is that of the possible regularity
of thange events when considering them as masssphenomena.

Let us return to the basic hypothesis: Intuitions are shaped by direct
involvement in a practical experience. To create probabilistic intuitions
in pupils, there is no otherway_texpaiensektobattlity.
For instance, if children, organized in groups, perform the same random
experience insimilar conditions, they would realize that, while the single
.outcome of each trial is unpredictable, sets of outcomes follow some r_talliallx,
As the number of trials increases, the outcomes tend to distribute themselves
according to certain predictable proportions.

In a recent experiment (Fischbein, 1975), subjects were asked to deter-
mine the probability of getting the pair 5-6 when throwing a pair of dice.
The pupils (grades 6, 8, and 10M (classes of mathematics)) had been pre-
viously taught the multiplication rule for probabilities. They knew, for



43

Fischbein

instance, that P(6,6) = 1/6 x 1/6. The subjects did not see any difference
between the probability of getting a pair of equal nuabers (for instance:
6,6) and the probability of getting a pair of numbers whith were different
'(for instance: 6,5). Twenty subjects were examined at each level. 'the

frequencies of correct answers, actording to grade, were as follows: grade 6: 1;
grade 8: 2; grade 10: 4; grade 10M: 3. We concluded that generally subjects do not
possess natural intuitions for estimating compound events. Furthermore, An
order to create such support, a verbal explanation and lists of possible
outcomes are not sufficient. The subject must participate in the random
satismit. He must see, for instance, that the relative frequencies of
pairs of equal numbers are in fact smaller, as compared with the relative
frequencies of pairs of non-equal numbers. Some subjects can perform
such an experiment mentally, but this is usually not the case. Moreover, as
a result of participating in real experiments, subjects umally improve their
capaCity for conducting such mental experiments.

This problem involves the following aspects:

,

(a) the training of a general capacity to perform mental experimentS''
'by using conceptually-controlled images;

(b) the training of subjects in a certain domain. They get used to
that domain, to its specific objects, prOperties, and phenomena
and.can then mentally perform the required manipulations.

(c) the role of age. We can suppose that formal operational subjects
ate better adapted in conducting mental experiments than younger
subjeotsprovided that they have received previous prectical :

training in the respective area:

4

The main point is that intuitions can be elaborated (or corrected) only
as a result of personal involvement in a pracLical experimental activity.
An intuition is not a passive copy (iconic or symbolic) of a given reality.
An intuition is always a construet, an interpretation, a presumptive expla-:
nation, a guessed solution. An intuition is ngt a perception and not a
simple substitute for a perception-like elementary mental image. An intuitien
is a theory preltntsd_leIcutuall:likfmanner; it is charafterized by ,

globality and practical efZectiveness. Such a symbiosis between a theoretical
model (with its capacity for interpreting, explaining, and predicting) and
perceptual qualities (globality, obviousness, imperativeness, effectiveness)
can only be created in a practical, experimental activity. Such an activity
requires moments of thoughtful guessing, of assimilating and coordinating
information, and of formulating plausible predictions. The result is a
mental structure having both the qualities of a theory and the qualities of
a perception. Like a theory, it is an explanatory or predictive device
which is able to connect in one sttucture the variety of facts gathered;
and, like a perception, the same conclusive construct will possess the
qualities of a perceptual representation (as a result of the pragmatic
character of activity itself).
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'

Including the student in a process of inquiry in order to create intu-
itions perfectly suits the teaching of probabilities, especially at initial, .'
introductpry levels. Thus, the problem in teaching, probabilities is primarily
the problem of forming an adequate intuitive background. Thenformulas used .

for solving probability problems have a relatively simple algorithmie
structure. However, even simple probability problems require specially
adapted intuitions which are generally'absent if the student.has not
received special training. This is not the case with elementary, geometry
dhere most of the concepts and operations have a natural intuitive cor-'
respondent.

In order to develop adequate probabilistieintuitions, there are a
variety of experimental situations: throwing dice, tossing Coins, extracting
marbles, playing roulettes, etc. All these activities can bb performed in
a practical, experimental way. The pupil has to analyze a given situation,
make predictions, organize,an adequate experiment, watch, record and classify
outcomes, compare results with predictions, etc. Various types of distribu-
tions (binominal, normal, etc.) receive an intuitive backing by effectively
performing the related experiments (and not just seeing the graphs of the
corresponding functions).

Is the Intuitivss.e.planst_of Mathematical Statements

Neeefsq1112.211_1119_811.9,21.?

Intuitive modes of representation and ideptification range over a wide
spectrum of apparently very different mental structures. At one end are
the most elementary forms of intuitive knowledge, almost reduceable to per-
ception itself: the estimation and decision-making sensory-motor structures,
like those which are expressed in space and time evaluations. At the pther
end are the complex, sophisticated intuitions of scientists and mathema-
ticians which are almost ready to be translated into fullyformalized analyti-
cal presentations. Between these'two extremes lie a large variety of
intuitive representations, interpretations, explanations, more or less
connected ulth figural models and verbal forms of expression. They ail
share the same basic features: they all synt4size a large amount of
personal experience on a global, self-evident extrapolative vision.

A beautiful example is that of the discovery by Galileo of the law of
inertia described by Wertheimer (1945). An outline of the story follows:

The following statement seems to be common-sense:

"Amoving body sooner or later comes to a standstill if the force
-which is pushing it no longer acts. Isn!t that true? It is
obvious." (Wertheimer, 1945, p. 161)

The preceding situation involves an
on all our experiences concerning moving
general, extrapolative interpretation of

elementary intuition. It is based
bodies. It is a theory: it is a
a class of facts. We feel entitled

/'
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to say that it will alwas be so. The theoretical justification may sound
as follows: movement.alw ys consumes energy. On the other hand, that
theory appears to be--in t e common-sense form-.4a global, campletely trustful
viewo I can safely predict that, after throwing a body under any possible
circumstances, the body.will top moving sooner or later, provided nothing'
else intervenes. I know it, feel I am completely sure of it, I do not
need any further explanation.. t is so. It is an intuitien.

At the other end of the,spec rum are Galileo's intui4ons about motion.
He carried out a series of experim:mts with free-falling bodies and with
railing balls on inclined surfaces. He stated that acceleration decreases
consistently with the angle of incli tion. Wertheimer continues:

Then suddenly he asked himself: s this not just half the picture?
Is not what happens when one throw a body upward, when one pushes a
sphere in the uphill direction,,the symmetrical other part of the
picture which repeats like, a refledtion in a mirror, what we already
have and which completes the picture?"

When a body is thrown up, we have not-positive but negative accelera-
tiod....But does this complete the picture? No. There is a gap.
What happens when the plane.is horizontal, when the ang1e.is zero
and the body is in motion? (p. 161)

The logical conclusion is: if the acceleration is zero, there are no
changes in velocity'. The ball will cohtinue to move constantly if no external
force intervenes: "A body moving at constant velocity will never come to
rest if no external hindrances are at work...." (p. 49)

"What an amazing conclution!" writes Wertheimer, "apparently contra-
dicting all familiar experience, yet required by the constancy of the
structure" (p. 164). As a result there it another theory--this time one
based on a logical analysis--which contradicts the first, though it was
deeply rooted in our life experidnce. Can such a theory be transformed into
an intuitive acceptance (i.e., as a self-evident.truth)? And, is it
necessary that such a logically based theory should be associated with an
intuitive feeling of obviousness, of direct credibility? Our answer to the
second question is: Yes, particularly if it must be opposed to a different,
incorrect intuition. Why? Simply because for none-staaione, there
is_allighprobability that the student will answer according to his intuition
and not the conceptual

Laurence Viennot (1978), a rrench physicist, presented the following
problem to high school and university students. Figure 1 represents a set
of balls which are being juggled by a juggler. The images of the balls are
frozen at a certain moment of their flight. All the balls are supposed to
be in the position, but have different speeds and directions of motion as
indicated in the figure. The question is asked whether the forces acting
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on all the balls (or masses) are identical at the instant shown (air resistance
considered negligible). The eorrect answer is that the forces are equal. The
only forces which have to be taken into account here are the weights of the
bodies. The bodies belng identical and at the same heights, the forces are

equal. However, most subjects consider the forces to be different. (For

instance from 49 students in physics in the third year of University, 37%
. have affirmed that the forces are equal, 557 that the forces are differentoand

8% did not reply). Analyzing the subjects' explapations it becomes'clear that
the students' who thought,that the forces were different were using the fol-
lowing (intuitive, non-explicit) interpretation: a ball which has been launched
upright keeps rising because it has been ,givenan impulse and that impulse has
not yet been used up. Consequently the bodies--though being at the same
distance from the.earth--but having previously covered different distances in
their motion, are possessing different "capitals of forces" (a student's
formulation quoted by L. Viennot) (Viennot, 1978, p. 19).

Intuitions are often very coercive ind persistent. Consequently, wrong
intuitions may have a misleading influence even in persons possessing a good
theoretical preparation in a field. This phenomenon is well known in prob-
ability. Furthermore, such misunderstandings an0 errors may be found in
other branches of mathematics as well.

,

Consider the following example. "C is an arbitrary point somewhere on
segment AB. We divide and subdivide segment AB by two, by four, etc. indefi-
nitely. Will WG J-rive at a situation such that one of the points of
division will coin ide with point C?" The question was put to junior high
school pupils (gra es 5 to 9) and, in a non-formal manner, to university
students (in mathematics). About 80% at all grade levels (iftcluding university
students) answered that as the process of division is not limited, the point C
will coincide--sooner or later--with one of the points of division. In grade
five, 81.2% and in grade ane, 88.1% answered that way. Yet, in grades 8 and

,9 (and in some cases even before) the pupils have learned about rational and
irrational numbers (Vischbein et al., in press).

Our main explanation of these results is that, intuitively, infinity

5 j.
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is equivalent to non-exhaustible. For intuitioni the various "degrees"
infinity do not exist. Consequently, as an effect of the non-limited
process df division, each of the points of the segment may be reached, sooner
or later. Although the grade 8 and 9 pupils possessed the conceptual ,

prerequisities for a correct answer (for instance that the possiblel coin-
cidence depends on the position of C), they generally gave a wrong answer
follawing their intuitive bias.

The problem is not only'to avoid the negatiye effect of some immature
or false intuitiohs. CsLrrectitL_p_eresettuitivelnetations or
explanations for mathematical thinkieg 3
aIti_licti_gg_linulforscikinineneral. Michael Pollany expressed this as
following;

...We can understand mathematics only by our tacit contribution to
its formalism. Lhave shown how all the proofs and 'theorems of
mathematics have inen originally discovered by relying on their
intuitive anticipation; how the established results of such dis-
coveries are properly taught, understood, remembered in the form
of theirAntuitively grasped outline; how these results are
effectively reapplied and developed furtherlby pondering their
intuitive content; and.theyscan therefore gain our legitimate assent
only in terms of our intuitive approval. I have indeed shown that
all articulation depends on a tacit compohent of the same kind for
conveying a meaning accredited by.the person uttering ite
(M. Polany, 1958, p. 188)

In fact--as has been frequently repeated--we must distinguish between
the axiomatic form of a constituted branCh of mathematics and mathematical
thinking as' a productive process. Mathematical thinking_lwenetructive
activitykduring which we try, we combine, we guess, we formulate assumptions,
we check, we extrapolate, and we make large mental :jumps. Mathematical
activity_possesses all these qualities which are shared by every adaptive
intelligent activity.. Therefore, if we admit that intuitions are a sine-
qua-non component of intelligent behavior,wemust also admit that mathematical
thinking normally includes intuitive ways of ftoking for, of trying, of
checking, and of representing.

If we refer to anticipatory intuitions, things look rather trivial.
Everybody agrees that while striving to solve a mathematical problem the
full solution is generally anticipated by a global view of it. However,
it is less evident that an intuitive understandin an intuitive version
of mathematical truth, isienerallnolessthortantformathematical
eetlylly_thee_iiitilitive anticipations are.

Productive mathematical thinking necessarily includes--as an active
component--intuitive forms of acceptance, representationond proof. The

crucialipint here is not to replace the fotmal structureil_ihIcuitions but,
rather to inject it (the formal structure) with the specific dynamics
of human thinkina. In other words, while mathematical truth is guaranteed
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schemes, the progress of mathematical thinking is stimulated and
by its various possible intuitive models and representations.
definition of continuity of a function f:E4R in a given point

: A function f:E-)11 is continuous,at a Point xo of E if, for every
neighborhood.0 of f(xo), there is a neighborhood V ofx0 such that for any
x6,V, we shall have f(x)'6U.

3

There is here a string of concepts the meaning of which is no eaSily
graspect. Presumably, each of the concepta has-been previously cleaily
defined and the stUdent knows these definitions. But it seems to be a
difficult task to eoordinate them in a unitary, pnrely logical.meaning.

In a more primitive intuitive interpretation, the same idea could be
expressed as follow*: A function f:EeoR is continuous in a point xo of
E if, for values Of very close to xowe could find values of f(x) lehich should .

be as close as we want to f(x0). That is, we should be able to approach the
f(x0) "value as much as we want, by f(x) values. The,primitive idea is that
of points which may be considered--or not--as constituting an intuitively
(visually) continuous line.

Such primitive interpretations of continuity may be dangerous, because
they might distort mathematical thinking. Illegitimate extrapolations may
be made if intuitions are permitted to invade mathematical activities. On
the other hand, full trust on iiltuitions will sharply liMit the freedom of
creatIve mathematical thinking.

From such considerations should we conclude that the intuitive inter-
pretations must be banished systematically from mathematical thinking?
Surely not, for the simple reason that without intuitions we cannot think
anductx. Pavlov is reputed to have said: "Pacts are the air of the
scientist.' But there are not only physical, material "facts." When
thinking creatively we are necessarily using "mental facts," "mental
objects." Intuitive representations are the most stimulating category of
such mental facti. An tntuitive interpretati8h has the capacity to
inspire, to guide, to elicit,and even--sometimes--to check productive
adaptive activity. The superiority (and the danger) of intuitions is that
they do not offer a merely phenomenal information. An intuition is a ,

theory., expressed in an elaborated and condensed cognitive structure and
based on previously lived, personal, more or less generalized experience.

The intuition of continuity is not merely the kat of a continuous
line. Some implicit affirmations.are contained in,that intuition. We may
try te make some of them explicit, i.e., there are no holes, no inter-
ruptions, no "abeences" in the "object" which is considered to be contin-
uous. This also implies the idea of.infinite divisibility of that contin-
uous object and the.idea that every part of it is connected to other parts
of it, etc. All these ideas appear rather confused when we trY system-
atically to derive them from the primitive intuition of continuity.
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Our intention should not be to make an inventory of such confused implicae
tions. We wish only to demonstrate that even this rather rough represen-
tation of dontinuity is not reducible to a pure image: it is a theory (or
a cluster of non-explicit theories). Its specificity with regard to a
formalized theory is its "compactness," its rather perceptual mode of
manifestation.

While thinking about continuity, we usually join to the formal
definition some compact, global representation of it, which must not
necessarily be that of the beginnert It may be more defined, an improved
version which fits the conceptual prescriptions of the mathematical
definition better (this is a "secondary intuition").

The specificity of an intuitive representation does not lie in its
primitiveness or roughness. The specificity of an intuition is defined by
its globality and hnmediacy. Corresponding to the various levels of
mathematical abstraction there may be various modes of intuitive inter-
pretations of the same concept.. In such a global, self-evident representa-
tion there are usually mixed iMages-and verbally expressed interpretations.
Beyond all these, there is a key unifying meaning, inspiring, directing,
stimulating and controlling the mental constructive process.

Foincarg wrote:

Frenons, par.exemple, l'ide de fonction continue. Ce n'est d'abord
qu.'une image sensible, un trait trac4 a la craie sur le tableau noir.
Peu A peu elle s'ePure; ou s'en sert pour construire un systems
compliqug d'inedgalites, qui reproduit toutes les lignes de i'image
primitive; quand tout a et4 termin6, on a decintri come, apels la
construction d'une voute cette representation grossière,,appui
desormais inutile, a disparu et il n'est rest6"que l'edifice lui

A
meme, irreprochable aux yeux du logicien. Et pourtant, si le
professeur ne rappelait l'imate primitive, e'il ne retablissait
momentanement le,eintre comment l'el'eve devinerait-il par quel
caprice toutes ces4megaliegs se sont echafFaudles de cette fapon
les nnes sur les autres? (Poincar;, 191h, p. 134)

A mathematically formalized'truth would appear as a strange, arbitrary
combination of statements without a basic intuitive representation serving
as lustification for unifying the statements in that manner and not in ,

another.

What is said with regard to the learner is equally true for the creativf
mathematician:

Pour le geometre pur lui mame, cette facu1t4 er3t necessaire, c'est
par la logique qu'on dgmontre, c'est par l'intaition qu'on invente.
Savoir critiquer (;st bon, savoir cr6er est mieux. Vous savez
reconnaitre si une comninaison est correcte; la belle affaire si
vous ne passedez pas,l'art de choisir entre toute les combinaisons
possibles. (Poineare, 1914, p. 137)



We Att acilog mentally on intuitions With intuitions, according to'the
genetait logigat 1i Lakatos wrwe:

'14,4 this blei3t alternative between the rationalism of a machine and
fhe itrationaioa of blind guess does not h 'd for live mathematics:
40 investigation informal mathematis wiii yieli a rich ettue..
tAonal logic which is neither mechanical nor irrationaL...
(i.altatos, 190,

informal, 44as-1-empirical mathem4tih4does not grow through a
mimotonous increahe 0.--che number of indubitably established theorems
hot throogh the incessanf !TIprovement ot guesaes.byapeculation and
ctiticism, by thh logic of Oroofa and'refutations. CLakatos, 1969,
p_

AN* A' the "creative" poriOds and hardly any of the "critical"
periodh of mathem4tical theories would be admitted tnto,the formalist
6. aven, where mathematical theories dwell like the seraphiim, purged
vt all the impurities ot "earthly uncertainty"....On those terms
Nevton had to wall roar centuries ontil Peano, Russell and Quine helped
hi& ihto heavian by formalizing the cticulus. (6akatos, 1969, p. 3)

040A Hilbert a4d5.

Wfm does not alwars Use, along with the double inequality a>, b c,

the. picture of three points following one another on a otrtight line
as.the geometrical picture of the idea "between"? Who does not.sake
use-oi dtawings of segments and rectangles enclosed in one another
when it is required to prove with perfect vigour a difficult theorem
on the continuity of functions or the wr...tence of points of condensa-
tion? Who could dispense with the figure of the triangle, the circle
with its center .or with the cross of the three perpendicular axes?
Or would give o the ropresenation of the vector field or the picture
of a family curves or surfaces with its envelope which plays so impor-
tant a part in differential geometry, in the theory_of differential
equations, to the foundation3 of the cattalos of variation and in
othor purely mathematical aciences?

The arithmetical symbcis aro vritten figures and the geomotrical
ffenres are drawo i'ormul. (Cf. Reid, 1970, P. 79)

at the hegiuntr0,1 oK. the above quotation, we would vinppwe that, for
Hithert, these fmages have only a mnemonic role, the last statement casts
a different: Ilrht on h taudpont: "the geometrical figures are drawn
formula," as he saW. They are symholti af concepts or of mental operations,
in fact, they are more than stmplc, pure conventional signs: they have a
key rote in, suggeting, orienting, organi2ing, and prompting our ideas
and in creating a teu I jn ipat ., meaningfulnes, of inn9r ,crueturality

te correpondiuy,

(1
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These intuitive representations are not heterogeneoua to mathematical,
thihking: they are 1 neceseary part of its dynamics. The condition is that
these iconic symbols should be controlled by the coaresponding formal
structure. The uee of geometrical symbols as e means. of strict proof pre-
supposes the exact knowledge and the complete 'mastery of the aaioms which
lie at the. foundation of these figures; and, in order that these functional
figures may be .incorporated rin the general treasure of mathematical
symbols, a vigorous axiomatic investigation of their conceptual content is
necessara,.

According to Hilbert, thc founder of modern axiomaties, the living
prodesi of mathematical thInkinemu"st not and cannot be urgod1 of intlitive

Wet emilThatireTaWITiia-7
isTR1E34-0 avoid the interference Of intuition in the flow of mathe-
matical thinking. Such an avoidance is, not a realistic enterpripe. Rathera
the problem is hew to control, conceptually, intuitions without stifling theme
If good intuitions are lackingawe have ITUald them. -If wrong intuitions
at\ present, we have to eliminate them. If vague or distorted intuitions
are present, we have to cortect them, to clarify them and to include'them
into a conceptuelly controlled process.

There are various ways for improving and enriching the intuitive aide
of a concept or a statement. Some of them can be deduced from the former
examples. I would like to emphasize only one aspect which seems to me of
high didactical value. I am referring to the act of elaborating a conceptual,
rigorous structure (for instance, a definition) corresponding to some
intuitively known property or operation. This is what creative mathema-
ticians are usually dointi, but it is very seldom that pupils are also asked
to do by themselves. The new concept must not be built aside from the
primitive:representatiorT-Eut in connection with it, in_a dialectical dialogue
wITE-re, The new concept ihoula-Tiihe-iff-tP.-Iniiii-itiacUiaTITY,'67Naiag:
TUTRai, the quality of objectual compactness, expressed by the original
intuition. On the other hand, the intuitive representation itself will
gain in clarity and in precision in communicability.

Let us come back to the problem of continuNity. We know intuitively
what continuity means. For instance, we can driw a continuous line on a
sheet of paper. Let us imagine that the line i; the graph of a function.
We woule like to make explicit what we mean by tontinuity. Let us try to
express the formal .;ondition defining completel, and exactly, without any
ambiguity,what a continuous graph means and con;equently what a contivuous
function means. Thie is made step by step. I ( iscover 'That the first

problem is to define the continuity in a given p int. For the primitive
intuition thie ie a new problem because continuft, is basically connected
with a btructurai, Gestalt, reptesentation. in oro to formulate the idea
of continuity I have, first of all, to destroy coai . lity itself, Co smash

it into infinitesimal fragments. The question ends up worded at.; followe: le

it possible that. for valuesof x close enough to xo, to find values of
f(x ) which ehould he as close we want to f(30)? At the next step. I
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return to, the function 49 a whole by generalizing the definition of continue
ity in a patticular point. This overall approach is probably very cemmon.
first, the analysis of the concept in reference to the particular pirau:e7
or element of the set is considered. Second, an exact description of the
properties is obtained. Third, the set as a whole is recOnsidered, etc.

Whatjollows from such 4 constructive process itethel inclusion ofithe
intuitiOn in a rigorous conceptual framework. But the intuWon

itself is no longer what it'has been. The ititnition has been re-built
and transformed into a quasi-new mental structyre in which some echoep of
theeprevious ideas of continuity have been.preserved but in which the
essential is represented by the mathematical structure itself, seen as a
whole.

What is important here, for building or rebuilding an intuitions
primarily the eonstrectiveeetaeleee. For reachieg an intuitive acceptance
of a mathematical stateMent ,(definition, theorem, formula).that statemehtee.
must be elaborated by the learner himself as a result of a personal--evee
original--aearch effort. The didactic utility of such an active approach'is
well-knówn and it Sounds rather like a trivial request.. -What has not been
said explicitly is that this requirement refers not to the conceptual
structure but to the intuitive component of the understanding process.

Furthermore, ttl_q_plasIng involvement of.the learner in that constructive

process truth
do with an existime formetLyeeeeTaktdeeend stabilized 'intuition. A new
intuition contradictieg an old one, or representing-an improved version of
an old one, cannot be elaborated without taking into account the primary
intuition,

Sometimes we arrive at a eonflictual sitpation. For instance, we
,present a twelve year old child with two segments AB and CD, CD AB. ."How
many points are there in the segment AB?" "An infinity-of points." "Can
we pet the points ai. AD and the points of CD into one-to-one correspondence"
"No." "Why?" "Because the segment CD contains more points." "You said

.[tin. both there is an infinity of points." s"Yos, but CD is longer. The
infinity of CD is greater than 'the infinity of AC."

Must we avoid such conflictual situations? Surely not. On the con-
trary, such.conflicts must be experienced by the learner himself in order
to overcome them.

Let us quote some more answers to a questionnaire referring to the
concept of infinity (Pupils grade 1s) .

"Thele are more pointl in a square than in a segment. (1 am answerine
according to my feeling and not to what I have learned)."

'There will be no correspondence between the natura) numbers and the
pmnts of a 1 ine, because the points of4 1 ine have no beginning and the
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itatural numbers begin with the'number 1."

"There is no correspondence between'the.natural numbers and the
positive even numberl,Aespite that both sets are infinite., because the
ratio between them is 1:2."

It is clear that the studentg use their "finitiate" schemas, based on
deeply rooted intuitions ("the whole is greater than its parts",etc.) in
interpreting relations between infinite sets. Vhat is surprising, and very
interesting from a psychological standpoint, is that the students accept
their own contradictory affirmations without,protesting and without looking
for a solution, ymjattettlythez_get accustomed.durimIlteirldlal
years to tacitly accepted inter retations and affirmations'which contradict

each other.

The example below illustratte a mixture of contradictory; intuitions.

The points of a segment and the points of a line can be put into one,
to-one correspondence "because a point is a conceptwhich'cannot be concretized;
that is why me can elways find a sMaller point and, on a given line, we can
make more points." So, in the pupils' mind a point is simultaneously a
coneept and an objectvith a variable area.

But, returning to the constructive process, it,seems interesting--
,both from a psychological and a didactical.point of view-.-that, for the
intuitionist doctrine in mathematics, an intuition 1_1)._e_.)...ivalent to the

result of a constructive menteleeeselE. An idea is intuitively clear, it
isintuitiVely acceptable, only if it can be effectively constructed by.a
mental process. In Heyting's words:

Intuitionist mathematics consists of mental, constructions; a mathe-
matical theorem expresses a purely empirical fact namely the success
of a certain mental construction.. Thus, "2+2 3+1" means I have
effected the mental constructioas indicated by (2+2) and by (3+1) and

I have found they lead to the same result. (Wilder, 1965, p. 247-248)

I do not intend to discuss the role of intuitionism in the history
of mathematics, or its validity as a mathematical conception. But I am
convinced that an analysis of the Intuitionist approach may be very
suggestive in the didactics of mathematics. This is not to claim that only
those concepts wh.ch express a constructive process are mathematically

valid. But I must take into account the fact that 9.121/_thplp_22nstELLITI
statements which the learner has attained 122_h_is own mental constructive
uocesses have for him an intuitive validitl.

A difficult problem is that of mathematical concepts which do not have
a constructive nature, such as, fur instance, the concept of actual infinity.

Such situations generate mental conflicti4, hard to overcome. But in such

situations, too, didactical means should be invented in order to overcome
the difficulty and to attain an intuitive acceptance.
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LEARNING PROCESSES

.Hans Freudenthal
Netherlands

When I accepted the invitation tO present a paper at this conference,
I asked: Is it a psychology meeting or an education meeting? I had a
good reason 'to ask this question because I am not a psychologistinot even
an"educational psychologist. Occasionally, I have thought Of myself as
an educator but perhaps even this was wmisconception. I am a school-
master and, I feel obliged to add, a bad one.

'- ',I like teaching, and like every achoolmaster, I am-proud if my pupila
learn what,I try to teach: There is only one thing to be even more proud
of, that is, the privilege (if' it happens) to observe a learning process
started by one's mere presence rather than by one's teaching. -Good teachers'
need not think aboeit their teaching, or about that of others, though of
course they are allowed to do io.. I started thinking about teaching iri

.

order to improve 'it, first my own and later on that of others, in particular
of learners-of teaching.

To help explain my biases about the situatidns that I will describe
in this paper, there are several reasons for emphasizing that I am riot a
psychologist. First, I never succeeded in understanding pure theory, or
in bridging such enormous gaps between psychological-theory and experiment
as I noticed, say, in Piaget's work, which other people--psychologists--
apparently have not the slightest difficulty to eross.

Second, I would not be able to create the psychologist's laboratory
sphere, or to converse with children like psychologists are able to do. I
am sure that at my first question children would ask me "What do you mean?"
It is a riddle to me--and a matter of admiiation--how, say, Piaget and his
collaborators managed to interview thousands of subjects without ever
being asked this question, not even by subjects who obviously did not under-
stand anything.

Third, I would not be able to have subjects fill out test sheets or
react on test questions or be interviewed, without discussing with them
their.responses. I would want to teach them what, is right or wrong and to
guide, them the right way. It is my feeling that keeping aloof means playing
a game against the child. Moreover, I am not interested in what a child
or an adult can do at a particular moment but what they can learn.

Finally, I am unwilling to speak about "subjects" when I mean
children or adults I worked with.

An Example Involving a Non-Mathemati.EgiC2ELtEt.

One of the children who taught me a great deal about mathematics
learning is a boy Bast) 3n, born 27 April 1970. Most of my diary (Note 1)

55
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on Bastiaan reflects casual observations on his development, made during
walks with him from the age of two onwards. It was heyho .spoiled me and
who made me suspicious about children who do not dare ask questions. I

always ad4ressed him in adult language,.but he never accepted_any 'Word
that he did not understand. He was patient enough to ask questions as
many times as he needed, hut he did not ahow the same patience wheAcon-
versely I did not understand him.

When Bastiaan did not understand me, he asked: "What do'you say,
Grandpa?" , (This is translated from Dutch; properly used, by adults, it
means, "I beg your pardon?") He used this formula up to 15 February. 1975.
On this day, for the first time, he did not use his ole formulaa but
instead asked for the meaning of a' particular word I had used. From this
day onwarda--he was about 4;10--he always asked for the meaning of a word
'if there was something he did not understand; he never switched back to
his old formula.

This story is an example of what I call observing learning 112cesse's.
It is observing jumps, discontinuities. It is My belief that learning
proceeds by jumps and that, in learning, the only thing you can reliably
observe are jumps. With small children these observations are particu-
larly easy, because such discontinuities are often accentuated by an
emotional outburst.

The event of 15 February 1975 was an important discontinuity in that
particular child's learning life.- But, why did it happen just at this
moment, and what did it mean in a larger context?

On 7 January 1975 something happened which was related to the event
of 15 February 1975. At that time Bastiaan read most of the capital
letters, and-globally--quite a few words. He also knew that printed words
are composed of letters but he.could not yet read by building words from
letters. While walking, we came across a parked car of the State Police
with the inscription "Rijk lolitie." He knew the car and the inscription.
I asked him "read this," and he "read" the word while moving his forefinger
from the right to the left. I told him that words are read from the left
to the right. He asked me, "And if you read it that way?" "Then it is
Eitilopskjir," I answered. He enjoyed this joke and gave me many more
words to be pronounced backwards.

The "backwards reading" event seemed related to what happened on
15 February 1975. I cannot ascertain how long befere 15 February 1975
Bastiaan knew what words were; long before this date he had asked for
meanings of words. However, on 15 February, he discovered a new function
of woads. Words are parts of speech, and if you do not understand some

. utterance, the reason may be that some word is unknown. The remedy is td
ask what the word means. I do not know if he discovered this strategy at
that particular moment.' But, at least as far as I know, at this particular
moment it happened for the first time that he singled out the word that
caused the lack of understanding and he asked for its meaning. And, this

a
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was the strategy he would adhere to in the sequel.

Before 15 February 1975, when he asked,'4"What do you say, Grandpa," I
used to produce another version of the same communication. I am pretty sure
I'never replied "Which, word didn't you understand?" It is strange that I
did not ask this question because it has been my habit to elicit questions
from, him by consciously inserting into my talk words / knew he di0 not know.
Was I myself unconscious oc the strategy; in cases of.non-understanding, of
asking for,the meaning of a word; or did I not grasp the importance of this.. '

strategy-or'the importance of teaching it to others? Why was I relying on
alternative versions,mhen he did not understand, rather than asking the
ene question, "1Which word didn't you understand?" If I had done so only once,

--I would certainly have.accelerated his learning process. But, honestly,
should I.have done so?

r

What general facts about learning can be drawn from this particular
'learning event in a particular child's life? I do.not 'believe in. patterw
of development. The number of developments I.have had the opportunity to
observe is not large, but it is large enough for me to be convinced that they .

usually are quite different from one Another. Children are individuals, an0;
they are learning as individuals. Of course, there are collective learning
processes toolearning processes of classes, groups, communiiies, nations,
However, Collectives, too, differ from each other, as do their learning
processes.

Distinguishing stages and phases is a way to generalize. HAking divisiont
and subdivisions looks like science but history can teach you it is a foregone
period 9f science. It is a cheap pleasure, a diver-ion from craving for
more profound research. MoreoVer,it is wrong. For lxample, linguistic psych-
ology knows about.three stages of expressionl one-word sentences, two-word
sentences, and'full-blown sentences. I believed this dogma until I observed
a girl who started with full sentences, first incomprehensible ones which
were gradually understood by her parents and her larger family, and finally,
from the age of three onwards by everybody.. She never spoke one-or two-
word sentences except in eases where adults do so. When I told others about
this case,.it appeared that it is not as excepeional as I had thought.

What can be learned from particular cases such as the one aba." or the
one involving Bastiaan? They can be used as paradigms: Analyzing one case
can provide a model for analyzing others. What is general about.learning
processes is problems rather than solutions. For example, one particular
case can lead to many questions such as the present one, about the various
communicative aspects of words.

Some readers may be disappointed by this discussion of one case of
learning--particularly because the examples given so far have not concerned
mathematics. I must confess that many of my observations which have been
most instructive to me have not concerned mathematics but rather, have
involved linguistic or general cognitive development. Nevertheless, from now
onwards, I will stick as close as I cm to mathematics.
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my next story is abouenumber. 'I'doloot'say; number. concept. I

%now "concepts" is the.fashion noWe-ttaching number concepts rather than_
umber, spac eoneepte'rather than geometry, logical concepts rather
than thinkinghut I believe that these trends are detrimentaleto mathema-

e
ties!. teaching.

When I discuss number, I:mod the way numbers 40 number are acquired
ae mental ebjects. It is welleknown how th41 worlo. Children learn
tounting the may they learn to recite nursery rhymes and to sing little
eongs-ealthough memorizing-the number sequente in the Cerreet order seems
po he.a bit more difficult, partii.because for numbers above 10 or 20,
'regularities become inereasingly complex. Neverthelese,duriag the early
stages of counting, eounting does not-necessarily mean counting something.
Youngchildren may learn to indicate small numbers (representing, say,
thAr age) by lifting a complex of fingers. However, the learning processes
linking counting to cardinal number are terra incognita. Discoveries
sbout-invariances my play a part in this.development though the,invariances
that seem most important are not the kind eonsidered by the superftcial
conservation experiments of psychologists. Such poychologipal theories
about how number comes about are firmly contradicted by the:next story I
am going to tell.

Bastiaan,.at the age of 4;3, shamed an unusual behavior towards
number. Though he knew some numbettwords., he did not count; in spite of
all efforts of his mother to teach him the numbet sequence, he did not-
undertake anything unless he were sure he would succeed 100%. Yet, with-
out counting he knew smell quantities, and was able to estimate reasonably
larger ones.

On 12 July 1974, t observed Bastiaan throwing three objects, one after'
the-other, into a ditch vhile mumbling: one, two, three. "How many did
you throw tnto the water?" I asked him, and he answered "four."

On 16 July 1974. Bastiaen found a papeeveake on the.street. I asked
him howlong it was and was astonished that he said "four meteedt....I
expected "ttd:et long." At the houredoor we met his mother and grandmother, to
whom I told the story. They, too, tried to estimate the length. Measuring
it with my extended arms I said: "Somewhat more than6metees, perhaps Oi."
Then, Bastiaan: "Let us (Jay seven," "Did ha really understand what he
seemed to be seying?",T noted down in my diary.

On 13 August 1974, dueing dirner at Bastiaan's home, Baeciaan vas
sitting opposite his younger eleter at a rectangular tablehie rather
opposite his mother, his grandfather opposite his grandmother, Suddenly,
during the dessert of red currants, Bastiaan lifted hie spoon in the greatest
agitation and said: "So many we are." Indeed there were $ix currants on
the spoen. I asked him, Nhy?" and he answered, "1 sea it 501' and then,
"two children, two adults, two grandpa and grandma." Possibly the six
currants on the epoon formed the same configuration of six aa we oecupied

Yedee,.dte...eefrex'ei,ddi,,:
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at the table, but this I could not see.

Set theory prejudices would prescribe us to interpret the relation
made by Bastiaan between currants and,people as a one-to-one mapping. It
was, however, more global, not atomized into,elements but structured into
groupings-.-an isomorphisg of. two structures. It struck mesthat one of
these structures was "family."

On 14 August 1974, in the Park, Bastiaan showed fpur snowberries on
his,hand: "So many we.are living at home."

Some time later--I do not exectly know when--he started counting.'

'On 9 September 1974, on the rim of the sandpit in the Park, Bastiaan
was building a long row of sandcookies with a mold he had found. It was
the first time he had made such a row of objects. Re proceeded from the
'left to the right. I counted whenever he made a new one. They were 18
when he himself started counting from the left: 1, 2,3, 4, 5, 8. Then
he said something like: "I wanted it to be six." I showed him where the
next six finished, but his attention was distracted.

Later on we picked elderberries. He carried the bag and said, "Six
pounds"--seeming to treat "six" as an indefinite number. I asked, "How
do you know?" "My mother can weigh it." "How?" "Withabalance." So,

Bastiaan really did know that weights are definite numbers.

On 15 September 1974, 'Bastiaan found a.hub cap of a. Fiat. He said,
"I have already got one." "How many do you have now?" "No," "How Inany

do you need for a car?" "I do not know." "How many wheels does a car
have?" "Four." "How many do you still need?" "Four." "No, how many
mire should you find?", "Two." At the door he calls out to hie father:'
"I must find two more, then I have four;"

On 16 September 1974, Bastiaan grabbed four cookies to take home and
said, "When the baby comes, I will take five."

s
On 18 September 1974, Bastiaan gathered chestnuts in the Park. With

five chestnuts in his hand, he first said "five" and then counted 1, 2,
3, 4, 5. Somewhat later he had three in his hand. I asked him whether I
should put them ih my pocket as I.had done with the others. He said:
"This must become four, there must be one more." He was mastering number
but, in general, he still refused to answer questions of "how many" or to
count. He counted spontaneously up to six, but I did not know how faehe
knew the number sequence.

On 6
He seemed
He asked,

October 1974, Bastiaan asked "How many is ever and ever six?"
to be asking aboUt repeated addition. I said, "6 and 6 is 12."
"Once more six." I said: 18. He said, "Once more six." I said:
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.0n 3rd January 1975, I noted .that during the precek'ng month, the boy had

mastered cardinal.and ordinal number,,though sometimes he goc confused
above 81. He counted non-ordered sets systemaiically; he.never counted

. the same object twice, and he rarely skipped one. 'He also counted: tMA
tree, two trees, three trees,.;.. He also.counted mental sets, like
airplanes' he had gotten at the Institute. Nonetheless, he still did not
like counting.

Later, Bastiaan asked: "If you make 12 and' 0, how much is it?" My
answer: "Do you mean if I put-it behind or if I add it?" (He meant the
first, which his mother had taught.him, but he said the second. He started
the talk in order to check whether his mother had informed him correctly.)
I told him.that 0 is nothing and that if you add it, things .do not change.
"Over there are zero cats. Can you see them?" "No."

On 27 January 1975, at a landing, Bastiaan reaped a lot of soybeans.
"How many did you reap?" I asked. He ansWered: "100." I continue: "What
is more, a hundred or a thousand?" He said: "A million." At this age
Bastiaan would count spontaneously up to 29. Yet, he enjoyed "counting
houses," that is, walking the streets and reading house numbers. He protested
against gaps and he understood the system of' even and odd.

Later that same day, Bastiaan said: "When I was 3, Monica was 1; when
I am 5, Monica will be 3," and so on with some errors at large numbers.
asked him: "And when-you were 2?". He said: "Monica was 0," and he himself
continued: "And when I was 1; Monica was in Mom's belly."

On 31 March 1975, Bastiaan said: "Today isthe first of April." His
father said, "No., that is tomorrow." 'Bastiaan: "Then it is 0 April today."

Let us stop here. You can read in Bastiaan's experiments.on Archimedes'
principle (Freudenthal, 1977) how number became more and more objective And
developed as a tool to master phenomena. It started, firmly embedded in
the child's family life--fatily and family development is the first structure
that is being modeled by number. Counting follows cardinal number; counting
invisible sets is a next step--in "Mathematic.4 as an Educational Task"
(Freudenthal, 1973) I stressed the deve1opillental-importance,of counting
invisible sets.

I never asked him questions about conservatien. It seemed
so IA eeal contexts. Conservation, of whichen/er magnitude, was
problem for 1?astiaan (Freudenthal; 1977)--implicit knowledge on
was rather a source of discoveries to him. For example, at the
Bastiaan conserved the constant difference of two years between
that of his sister.

silly to do
never a
conservation
age of 4;9,
his age and

I should add that, with any child I observed, I never met any who had
problems of conservation of the type that occur in psychological experiments.
conclude that such conservation difficulties are nothing.but laboratory

artifacts.



61

Preudenthal

a, I cannot finish this section without telling an amusing story that
happened much later.

A

28 November 1975 (age 6;7): Walking in a forest, we saw at a distance
of about 100 meters away a group of girls pass on horseback. "How many .

were they?" I ask. Monica answered immediately: "Seven." (rhis is her
favorite number; as Bastiaan's wag six.) Bastiaan estimates: "40." I say:
"No." He changes to "20." I say: "I think 15 to 20." He: "25," I

explain him what "15 to 20" means and (as a joke) I continue; "We can
simply count the footprints." He counts from 1 to 20 while stepp,ing frean
one footprint to a next. I object: "A horse has,four legs, doesn't it?"
ye, with big jumps: "4, 8, 16, (hesitating) 20, 24, (hesitating),'27
(hesitating) 30, 34, (hesitating), 37, 40. It must be,40'horses." I:

"But this means there are IO horses, since one horse has four legs. 10

horses have 10 left.forelegs, 10 right forelegs (I am lifting my'hands), which
"make already up for 20." He: "Thus 80; 20 horses have 80 legs."

Examples Involveingegemetu

On 13 October 1972'(age 2;5), Bastiaan had his first opportunity to see
the labor yards and towing.club (where we regularly came) from the othet%
side of the canal. He recognized dnd identified all.detaile'and he hat a
good sense of orientation Once, he wanted to-go'the straight way to a
point that we had always visited by a roundabout walk.

On 6 December 1972, in the Park, I drew a circle around him with a.
stick and told him he was locked in and could not escape. He accepted it
Only after I had wiped out a little door did he step out.

13 Januaty 1972: He drew a circle around himself in the snow and asked
me to do the same, and then to exchange circles--a funny play,

-8 April 1974: We were at a public ground, a square meadow, surrounded
by a low fence--he asks how a mowing-machine can move in. I dhow him a gap
in the fenceat a rather large distance. "This is not big enough," he says.
We check it; he is right,

16 March 1975:, Spontaneoualy, Bastiaan "measured" the width of a path
by steps. "This is-six further." I show him ho I can crossthe path in
one step. He remeasures the path with two steps and continues measuring
distance by pacing.

29 June 1975: Bastiaan and Monica were crossing a meadow, approaching
a door to the playground along a somewhat oblique line. We could-not see
the door because it was hidden by the shrubs. So, Bastiaan went running
10-20 metersparallel to the fence of the playing ground, in order to look
straight to the door. He confirmed that the door was open. (See Figure 1
on the next page.)

13 July 1975: Bastiaan looks at a mole-hill and asks,"How big is a
mole?" I show him with my hands thci' length of a mole. "No, I mean how
high," he _Lys.

Ch
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playing ground door
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Bastiaan

Figure 1. Our Path to the Playground

21 July 1975: At my office, Bastiaan made a long tape full of numbers
on the adding machine. He stretches it on the floor of my room, 1 ask
him how many steps it is. He steps along: 1.1 steps. He has another much
shorter tape that is at most three of hii steps long. He adds the small
tape onto the end of the long one and now measures 17 steps. I do not
explain to him that it is impossible. He always counts the 0-th.step as
number 1.

27 July 1975: On a bridge, I drew Bastiaan's attention to the crooked
mirror images of the horizontal and vArtical parts of the bridge in the
water. I asked him for an explanation. First, he said he did not know,
and then he continued: "Because the water is curved."

2 August 1975 <5;3): We were taking a long walk, crossing the
Amsterdam-Rhine canal from one bridge,to the next--about 2 km. At about
one third the distance between the bridges, I ask Bastiaan whether it was
half-way. He did not know the word "half," at least,not related to
distances, so I took a stick and broke it to show him what is a half. He
protested, showing Me that one piece was a bit longer. I repeated my
question about the bridges. He 'said it was not half-way, but indicated
the wrong part as longer. I tried to-continue discussing distances but he
was not-interested. When we were half-way, be spontaneoubly said, "Here
begins the middle." Apparently "middle" was the word he knew, rather than
"half."

24 October 1975: While walking, hastiaan told me that he was preparing
to make a record-changer,- but he still needed a. wooden slab. "A square?"
asked him. "No," he answered, "like the front of a car,"--drawing a

rectangle on the ground with his forefinger. (He is right,though no adult
would describe the front of a car as rectangular.) I said, "A tile ii
a square. What are two tiles together?" "A rectangle." "Three tiles?"
"A rectangle." "Four tiles?" "A square."

31 October 1975: Bastiaan was playing with two irregular pieces of
wood. "This is longer and that is shorter," he said, though the difference
is small. "What would you say, if there were three of them?" I ask him.

6
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I had to help him with his terms: biggest, smallest, in between, but he.
was able to apply them to desckibe family relations involving himbelf
and his tWo sisters.

1 November 1975: I had collected about 30 chestnut leaf stalks. I
threw them on the table and asked him to estimate the number., He hesitated.
"Do you think a hundred?" "No," with indignation. "Put them into order."
He takes them together in a bundle. "They 4re not in order." He presses
the bundle against his belly in order to find out the longeste I shoW him
it is easier to erect, the bundle on the table. The longest one was easily
found; then, in rapid succession, he found the longest of.the remainder.
Soon, the whole collection was ordered according to size.

I cut off stalks of length 10, 9, He. identifies three
lengths and'names them Ae such.. I cut another stalk of 5 cm. He predicts
5 + 5 = 10 and notes it down.

2 November 1975:- During experiments on Archimedes' principle we used
the typewritten image of the scale of the spring balance (Figure 2) in
order to note down measured weights; and to add and subtract them geometri-.
cally. He was not yet able to add weights arithmetically.

.When he first looked at the typewriter.scale, he protested the use
of the letter 1 as a figure instead of 1. However, he did not notice that
the typewritten scale was horizontal rather than vertical and that it was
not Congruent to the scale of the balance.

25 May 1975: Bastiaan's parents tried to explain to him that an
hour has four quarters and that a florin has.four quartersunsuccessfully.
I take an apple. "You can halve it this way" (along a meridian), "and
once more that way" (along an orthogonal meridian); "these are quarters."
Then I asked: "How many quarters of an apple are in the apple?" He'

answered "eight." "Why?" "You can halve it once more that way" (along
the equator), he answered.

T)
16 June 197 (age 6;2): After a long raw of sunny days, Bastiaan

noticed clouds. "It will b raining," he said. I explained to him that
rain clouds are )low and dark, whereas these clouds are high and shiny;
no rain will fall out of these clouds. He asks: "How high are these
clouds?" I say: "10,000 m." de asks again: "How high are rain clouds?"
"1,000 m." He continves: "So, if we are here" (showing to the ground)
It and rain clouds here" (showing about 30 cm above the ground), "those cloud
are as high as this" (showing a meter above the ground).

Though this was a rough comparison, it was Bastiaan's first ex?licit
showing of proportion--an important event in his development.

16 July 1976: Bastiaan uses a stick with a longitudinal groove
together with two bottle tops to represent a machine gun with wo bullet.
"What does a gun bullet look like?" he asked though he himself koPw how
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apparent0 did not know. I showed him examples like the section of a
a

tree, the rim of a trash basket, a button, and he mentioned the sun end thel
'mon. Finally, I showed him a circle-shaped hole in the slip of a beer can;
He protested. "This is a bit long." Indeed it was rather elliptical--
a difference of less than 10%. The next day he used the word "circle"
correctly.

It was most revealing that Bastiaan did not protest about considering
the cross-section of a tree as a circle though it was much more irregular
than the beer can. But the sharp hole in the can claimed a great precision.

4 September 1976: Bastiaan wanted to make "experiments with centi-
meters and decimeters." He knew the length of a meter and he knew about
the ratio 10:1. I asked him how tall he was. "Better than a meter."

Bastiaan treasured his height (122 cm), his arm span, and his step,
the ground plan of the suite of two rooms by means of steps--later measuring
the whole ground level. After having measured the IdAJth of one room, he
prepared to do the same with the other. Then, he drew a greund plan on
squared centimeter paper with his step taken as a unit (see Figures 3 and
4).

2ta P (\.n
o pa.,2

12-2(
9

-2

Figure 3. Bastiaan's Drawings

cr.

Figure 4. Bastiaan's Ground
About Hi:: Height, Step, and Span Plan
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The idea of a ground plan was maintained up to the drawiag of the doors,
which were "turned down."

19 September 1976: At a forked path, after a discussion on cross-
roads, Bastiaan said, "There is not only right and left, there is much
more, front and back." "How many?" I ask him. "At least twenty."

21 September 1976. During our walk, Bastiaan asked: "Where is the
center ef the Netherlands?" (Possibly he had heard about Utrecht as such.)
I explain to him that this was not easy to determine. Then, I asked,
"What is your center?" He pointed to his top. I argued that the center
should rather be in his belly. Then, I asked him about the center of
a tile or the pavement. First, he denied its existence. Then, he showed
its approximate center. I asked him to do it more precisely. He pointed
to the groove between the next row of tiles and cut it with an estimated
midline between the other side (see Figure 5).

Figure 5. Tiles

I explained to him how to find the center using oblique lines. He
drew the diagonals and mentioned the word diagonal. He used this procedure
to find the centers of other objects, e.g., a bench.

26 September 1976: Bastiaan found the scraps of perforated sheet
iron from which he made his little dogs (see Figure 6).

Figure 6. Bastiaan's Dogs
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27 September 1976: In the sandpit in the Park, Bastiaan had built
a large construction of roads, bridges, walls, tunnels. I asked him if he
could make a sketch of it when he got home, but he wanted to do it on
the spot.

I gave him a little piece of paper. (For a long time, it has been
his habit to make written reports.) He said, "I do not have a mensuring
tape." I replied, "Then, you must estimate." He measured with two
forefingers, parallel at a fixed distanceproceeding with the left
forefinger in the hole made by the right one. Concerning tunnels, I told
him invisible things are indicated by dotted lines.

An ascending dam le .? him into difficulties. I explained to him what
working-drawings are.

Figure 7. Bastiaan's Map of the Park

A few days later he made a terrific game, a design of roads, with
holes at the cross-roads and red and green circular disks drawn on an
underlying sheet, so that by a slight turn red and green could be inter-
changed on the whole Plan.

13 February 1977: "astiaan swings the gate of a lat-or yard. The
door drew traces in the sand. "What is it?" I ask him. "A line," he

says. "What kind?" A curved line." 'Nrhat kind of curved line?" "A

circle." "Yes," I said, "about a quarter of a circle. It is like the
hands of a clock." "No," he said, "like Ilipers."

1

21 February 1977: Bastiaan played with a little car in the corridor
of my office. As usual, he made a written report--awfully spelled. "9
times pushing a car comes through the corridor of IOWO." He remarks that
with another car it would be different, for instance, if the car were
longer or the wheels stiffer.

18 March 1977: From the bar on the 21st floor of the Holiday Inn,
we were looking down on the Railroad Station. He saw "sparks of a train."

explained.to him that the sparks were really reflections of the sun in
the windows of the moving train, I made a drawing and asked him how
a sun ray would be reflected by a window. When he falsely produced the
ray, I made a new drawing. His answer was again wrong, but then he
corrected himself. I asked similar questions about a circular bi11ard
table. His constructions were reasonable.
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24 March 1977: At dinner, with paper napkins (folded twice as usual),
I unfolded a napkin, asking Bastiaan whether by folding he could make a
square half the size. He folded it back and hnmediately so; he was wrong.
He tried it by folding away small strips parallel with the borders. "It
should be done more precisely," I explained to him, "you must fold it
differently." He seized a corner in order to fold it towards the center.
Unfortunately, I intervened to prevent him from going beyond the centerl
So he stopped at the center and immediately applied the procedure to the
other corners. In the same way, he then halved the new square.

14 April 1977: Bastiaan tried to describe the size of a certain box.
He did it with his hands, "that wide, that high." He did not understand
my question, "How long?" Cautiously, I tried to lead him to talk about
the length. "I cannot understand what yo4 mean, Grandpa." Using a pillar
box, I pointed out that three dimensions are required. He then understood
my question, though he described the third dimension also with his pair
of hands lifted left and right, rather than in front. Later, when describing
a parked car it appeared that he wholly understood the matter.

16 April 1977: Bastiaan was playing on an exercise trail. The trail
was 80 m long. I followed him walking. He ran back to meet me and then
ran to the finish. "I have run twice 80 meters:' "1Why, you did not return
to the start." "I went to the middle and back, and 40 + 40 = 80." At
home he wanted to tell about how he ran 2 x 8meters, but he makes it 600.
He did not see the connection with 8 + 8 = 16, which he knew very well.

August 1977: In our holiday resort, at the edge of.a brook, Bastiaan
makes a model of the North Sea, the Dutch coast, the Frisian Islands, and
the German and Danish coast. He called it a miniature (possibly he learned
the word in connection with golf). His grandmother took a picture of his
work. He said: "This becomes a double miniature."

1 September 1977: During dinner at Bastiaan's home, he asks how much
goes in a wine bottle. I told him a liter. He asked, "What is a liter?"
I explained that a liter of water weighs 1 kg. He objected: "But a liter
of something else weighs more." I continued, suAccording to a 750 at the
bottom, it should be 3/4 liter." Bastiaan asked, "What is three quarters?"

I showed Bastiaan with a distance of 1 to 2 dm: "This is half, this is
half of a half, a quarter, and that is three quarters." He again protested:
"If you start this way," his arms extended, "it is much more." There are
two pieces of beefsteak left on a plate--one somewhat bigger than the othe...
Miss Adda pointed to the bigger piece and asked: "Is this half of it?"
Bastiaan said, "Half of what?" And immediately continued: "No, it is
bigger."

Later in the meal, Bastiaan said spontaneously, "Parallel lines do not
meet." He probably had learned this fact at school. I asked him whether
lines that do not meet are always parallel. After some experimenting with
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two forks he exclaims: "Two roads above each other, they nev r meet, they
'go far from each other."

10 September 1977: Back from a long walk, we cross a slihtly
ascending bridge-4onica and myself on the,side walk, Bastiaan,on a small
wall along the sidewall ascending discontinuously by steps with horizontal
pieces about 5 meters wide. Bastiaan said: "Now you are higher, but
then I will be higher." He was referring to the difference betWeen continuous
and discontinuoUs ascent '(see Figure 8).

Continuous Versus Discontinuous Ascent

26 October i 17: On a walk to church, Bastiaan wanted to know the
height of a rather tall tower. I suggested that :le should estimate it.
He guessed, "100 meters." I criticized the estimation. "You know the
cathedral tower is only a bit taller than 100 meters. I am 1.80 m tall
and that is nearly 2 meters." Then I stood by the tower and asked, "How
much then is the whole tower?" Bastiaan responded angrily: "I did ask
you to tell me how high the tower is."

I went with him to the low stone wall surrounding the broad forecourt
of the church. "Give me the stick," I said. (It was a piece of wood of
about 40 cm with a sharp tip which he had found just before.) I put the
stick vertically upon the wall, pressed my right cheek upon the wall such
that my right eye, the tip of the stick, and the spire of the tower were
in one line. I asked him to do as I did. He understood my intention as
he looked with the correct eye. He felt something should be measured though
he was not sure what it might be. He measured the distance between the
place of his eye and the stick with a span beween thumb and little
finger* (which he knew was 1 dm). The distance was 3 dm. "So the tower
is 3 meters," he said. "That is impossible," I answered. I suggested
for him to measure the distance between the wall and the tower. While
he preferred to estimate it, I insisted on the distance being measured by
steps. It was 50 steps. "So 50 meters." I told him his steps were not
a meter, as I had done many times before. "Even my ...teps are only 80 cm."
Then, I paced the distance and told him it was 36 m. He repeated the
observation on the wall and spontaneouly remarked that the stick was
somewhat longer than the distance from eye to stick. "So, how tall will
the tower be?" He grasps that it must be higher than 35 m. I suggested,
"40 meters."

Compare this method with that of 27 October 1976.
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I continued, "And how high is the clock?" He again starts aiming,
and marks the height of the clock on the stick. With some help this is
established as 3/4 of 'the stick. Then, without any hints, he estimated
the he,ight of the clock to be 30 meters.

MeanWhile, according to his habit., he made a wkitten report. He drew
the. sketch (see Figure 9) without help; and, I did.not correct it. It

shows that he, understood the essentials.

Figure 9. Bastiaan's Drawing of the Church Tower

Next, Bastiaan remarked: "It is a better way to do'it with a little
mirror. It is a pity I did not pick up the mirror pieces at the locks.".
Indeed, on our way back we fotind pieces of a smashed car mirror. Bastiaan
explained in exact terms how he could measure the height of a tower using
a mirror. His alternative solution is shown in the next figure.

MIRROR STICK TOWER
Figure10. Bastiaan's Alternative Solution to the Towef Problem

"It is easier," he said, "You need not press your eye upon the wall, but it
also is more difficult because it is more difficult to find." I tried to
explain to him that with sunshine the height can also be found using
shadows. 'No, you cannot get the whole shadow on the court," he objected.

At the locks he picked up a mirror piece and tried his technique on
the height of streetlamps--unsuccessfully.

3 Decewber 1977: Looking at a brush, Bastiaan said: "1..2re they
forgot 1 cm') to be trimmed." (It was meant as a joke.) I asked him what
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a cm3 is. He replied, "A cube with all sides 1 cm." "It is called an
edge rather than a side. How many edges does a cube have?" Bastiaan
answered (hesitating): "8." I said: "4 below, 4 above, and..." (he
seemed to figure out 6 x 4.) I continued asking: "How many corners
does a cube have?" "8." "How many faces?" "6." "Row many edges? 4
below, 4 above, and ... standing ones?" Bastiaan answere(., "12." "A

little while ago, you tried to do 6 x 4, didn't you? What is wrong
with that?" Bastiaan said, "You did not say standing ones."

ar_LalISummons

Let us stop to think about the meaning of the preceding.bulk of
observations. It is rough material that I indifferently collected and
have used extensively in the meantime to understand. geometrical learning.

My -wethod widely differs from Piaget's I did not start .from any
preconceivd theory, and I rejected the idea.that geometrical development
proceeds according to some logical system of geometry however beautiful
it might be. So I could not confirm that geometry develops according to
the classification of the Erlanger Programme. 'I should add that even as
a mere hypothesis this is highly improbable in itself. As a matter of
fact, Piaget's experiments (which I do not consider as meauingful) if
correctly interpreted, contain as many proofs to the contrary. There is
as little evidence that geometry develops according to the sequence
"topology, projective', affine, euclidean geometry" as there is for plane
and space to be mentallv constituted as cartesian products of two or three
straight lines, as Piaget puts it.

I would not maintain that I can do without some theory of my own,
albeit as a frame to order and to understand my observations. I believe
that little children have at their disposal certain mental objectsin
particular, geometric onesand mental operations on these objects; and
my efforts are aimed at discovering them. It would be a hard thing to
decide which are innate, and to what degree, and vhich are acquired at a
very early age. Straight lines, parallelism, circles, squares, right angles,
planes, symmetries, congruences and similaribies are suggested so early
and by so many concrete ebiecte and phenomena of our cultural environment
that there is little chance to trace back their origin to an even earlier
source as in innate ideas. On the other hand, we cannoL but assume that
on our cerebral cortex a computer progremme is imprinted that allows us
to perform congruence and similarity transformations and use polar coordinates
to compare things as to their "true size" and to put things "upright."

Geometry is a part of mathematics where one can go a long wy with
nothing but mental objects. Many people never form concepts like straight
line, circle, square, and other ideas mentioned in this papec. Wit::out
formal education, those who go as far as to form conce,?ts temain a small
minority.

Formal instruction of geometry usually aims at teaching concepts. I think
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this is Wrong, Teaching geometry should, start wide developing mental
objects, and this development should begin at the earliest age where it
is feasible--that is, during the whole period of kindorgatten and
elementary school. Starting geometry as late as is now the habit is a
serious mistake.

Let us once more review some of the stories from Bastiaan's diary.
With young children one example may suffice to explain what a circle is,
or a square, or a horse,or a tree. Probably somewhat,more examples, though
not very many, are needed to tell them about "two" or "three." Color
seems to need even more examples. But what about'grasping the precieion
required (or the vagueness allowed). if something is to be identified as a
circle? How did Bastiaan grasp that in the world of trees the cross-
sections deserve the predicate of circle while sharp holes in metal
sheets have to fulfill much stronger conditions to be admitted as circles?

Picture books and playthings which imitate objects in the world
of adults presuppose and develop ideas about ratio and proportion long
before they are verbalized and conceptualized,. But what about constructing
ratios in order to grasp big sizes? I often constructed such ratios to
explain about sizes in the universe. Bastiaan used these ratios to
estimate the size of clouds.

Straight lines are very early mental objects. Straightness is
suggested by objects and phenomena in the normal environment: by the upright,
posture, by the extended limbshands, legs, fingers--by the stalks of
plants and the trunks of trees, and by the sttaight path (which is also
the shortest, the most direct path).

One of the flact tools made by man is the arrow, paragon of straight-
ness, and civilization produces ever and ever more and more objects and
processes and elicits actions sugeesting or representing straightness:
sticks, pins, rims, edges, paths, iolds, cuts, tended strings.

Straight lines originate in a multifarous Way:

by copying (drawing with the ruler),
as intersection of planes,
as a cut line,
as a fold line,
as a straight-on path,
as a shortest path,
as a stretched string,
as a vision line (light ray),
as a reflection axis (in the plane),
as a rotation axis (in space).

These ways of generating straight lines are not independent of each other.
The sharp edge of a ruler is somettnag like the intersection of two planes.
The cut line originates as it were by copying the sharp edges of the pairs

1.16.
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of scissors. The fold line comes into being by giving the paper the shape
of two (fragments of) planes, and the straightness of the axis of
reflection may somehow be explained similarly.

The most subtle in this catalogue seems to be the vision line. What
was most astonishing about Bastiaan's measuring the church tower--and his
most original ideawas connecting his eye, the tip of the stick, and the
spire of the tower by a straight line. I would not have_expected it so
early. It is strange that explaining shadows geometrically is a later
stage,

The catalogue of sources of the straight line is intended to show
the phenomeno-logical complexity of such a mental object. Is it develop-
mentally as complex? There are innumerable questions I could ask about
this one mental object and among them there are very few I would be
able to discuss. What is general about learning processes is problems
rather than solutions.



Freudenthal

74

Reference Note

1. Pieces from the diary were published in Dutch: Wandelingen met Bastiaan,
Bastiaan's Lab, Bastiaan meet (de wereld); Pedomorfose 7 (1975), no. 25,
p. 51-64; Pedomorfose 8 (1976), no. 30, p. 3554; Pedomorfose 10 (1978),
no. 37, p. 62-68.
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